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ABSTRACT 
 
Diffuse gliomas are a prevalent type of brain tumor in adults. Currently, treating these tumors is a time-con-
suming process. Radiologists manually identify and segment diffuse gliomas in Magnetic Resonance Images 
(MRIs), which are then used as reference by surgeons during treatment. Prior research conducted on automating 
this process utilizes machine learning (ML) models such as CNNs and U-Nets. One key piece of prior work is 
BU-Net, which slightly alters the architecture of U-Net. To contribute to this field, we propose a novel, simpli-
fied version of BU-Net, dubbed GU-Net, optimized specifically for low-computation neuroimaging. The pro-
posed model is trained on a subset of the BraTS 2021 dataset, consisting of a mere 1647 images stemming from 
549 different brain MRIs. Under data constraints, we achieve a 71.58% dice similarity coefficient (DSC) and 
64.29% Intersection Over Union (IOU) on the testing dataset. Compared with U-Net's 0.672 and 0.611 and BU-
Net's 0.613 and 0.554 on the same dataset, GU-Net’s success under data constraints compared to the other two 
models is shown. Our work specifically advances diagnosis in underprivileged areas and hospitals with less 
funding, as GU-Net requires less data to be used and has higher efficiency compared to existing solutions. 
Dataset: https://www.kaggle.com/datasets/dschettler8845/brats-2021-task1 
 

Introduction 
 
Diffuse gliomas account for nearly 80% of all malignant brain tumors in adults and often require precise surgical 
treatment (Finch et al). The segmentation of brain tumors from MRI images is essential, as accurate segmenta-
tion helps facilitate accurate classification. The segmentation of these MRI images involves processing the MRI 
images with the tumor, outlining the tumor, then returning an image of the tumor without the surrounding 
material. Conventionally, radiologists manually identify and annotate MRI images, a process that takes manual 
labor and time. This is especially true in the case of diffuse gliomas due to their unclear borders (as seen in 
Figure 1) and low contrast in raw MRI images (Havaei et al). Hence, the issue of human error becomes promi-
nent. To solve this issue, the use of machine learning has risen as a solution to optimize this task (Fletcher-
Heath et al). Early attempts at automizing tumor segmentation used primitive thresholding and edge detection 
techniques. However, such methods, such as Sobel or Canny edge detectors, often achieve low DSC and IOU 
scores due to their struggle with irregularly shaped tumors.  

Current methods for brain tumor segmentation often use convolutional neural networks, or CNNs, 
because of their ability to capture spatial hierarchies in visual features (Agrawal et al). One popular CNN that 
has been used to segment biomedical images is U-Net. U-Net uses an encoder-decoder framework, resulting in 
an output image with the same dimensions as the input, as seen in Figure 2. The model encodes the inputs by 
applying same-convolution and max pooling layers to downsample the image. Then, the inputs are upsampled 
via transposed convolution layers. These layers take a kernel and image matrix as input to expand the image 
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matrix using a convolution matrix, producing a segmentation mask. There are also skip connections in between 
blocks across from one another, allowing the mitigation of information dilution and stabilization of gradients. 
This network was revolutionary for segmentation tasks because it had a much higher DSC and IOU compared 
to previous networks at the time. 

 

 
 
Figure 1. Differences between MRI scans with and without tumors. 
 

 
 
Figure 2. The Original U-Net Architecture 
 

U-Net was originally developed to solve a cell tracking problem; however, the architecture was quickly 
adapted to solve other tasks (Ronneberger et. al). The first instance of the implementation of U-Net for brain 
segmentation was done in 2017 by Dong et al. Their model was trained from the BraTS 2015 dataset, a dataset 
consisting of 220 brain MRIs with tumors. After they modified the U-Net architecture to suit brain tumor seg-
mentation, their model achieved a dice similarity coefficient (DSC) of 0.81 (Dong et al). Dong et al. utilized a 
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total of 27 layers and used a maximum of 100 epochs in order to fully train the model. Another significant 
application of U-Net was done in 2020 by Wang et al. Wang et al. utilized a 3D U-Net architecture to segment 
tumors using two different patching strategies: dividing the whole augmented image into equally sized patches 
for the first strategy, and dividing it into successively smaller patches for the second one. Wang et al. trained 
off of the BraTS 2019 dataset and used 100 epochs to achieve 0.894 and 0.852 DSC for segmenting the whole 
tumor in the validation and testing sets respectively. In 2020, Rehman et al developed a neural network called 
BU-Net that performs a multiclass semantic segmentation with gliomas, dividing it into the whole tumor, tumor 
core, and enhancing core. (Rehman et al) Their model trained from the BraTS 2017 and BraTS 2018, improving 
off of previous state-of-the-art methods and achieving a DSC of 0.901 for the whole tumor.  

A common theme present in these deep neural networks is the high volume of computational power 
and data used to train the model. For instance, the BU-Net architecture uses around 65,000 images to train the 
model. The BraTS 2017 and BraTS 2018 dataset combined requires around 8 GB of space (Baid et al). Pro-
cessing through all the images and training the model requires high amounts of computational power because 
of the 30 million parameters the model has to learn (Ali et al). This becomes an issue for low-funded hospitals 
because they lack the resources, such as GPU and storage space needed to utilize models effectively. Large 
amounts of training data are also not always available, especially in the context of healthcare. Therefore, GU-
Net was developed to better understand the performance of the U-Net and BU-Net architectures when supplied 
with low amounts of data for training, validation, and testing. GU-Net uses only 22 million trainable parameters 
and utilizes only 62 epochs to train our model. It removes two layers from the BU-Net architecture, uses differ-
ent pooling techniques, has more filters, and implements L2 regularization. Even with these constraints, GU-
Net demonstrates the learning capabilities of these models and the potential for high-performing networks that 
do not require large datasets. After training the GU-Net model, our model achieved a test DSC of 0.716 which 
is comparable to the U-Net architecture used by Dong et al and Wang et al, considering the difference in training 
images GU-Net used compared to U-Net and BU-Net (see Table 1 for quantitative comparison). The training 
processes for U-Net and BU-Net are computationally expensive, especially in the field of medical imaging. 
Therefore, when large models such as U-Net and BU-Net are modified and trained via limited data and epochs, 
the computational burden is reduced and the training process is made more efficient. 
 

Methods 
 
Dataset 
 
We used a subset of the BraTS 2021 training dataset. Although the dataset provided 4 different MRI modalities 
– T1, T1-Post Contrast, T2, and T2-Flair – it was found that T2-Flair to be optimal due to its high contrast and 
clear visibility of the tumor, as shown in Figure 3. After filtering out all other imaging modalities from the 
dataset, a total of 1251 3D brain MRI scans in the NIfTI file format was reached, each with 3 different view-
points, as shown in Figure 4. Since our model uses 2D convolutional layers,   only choose images from the axial 
view were used since the axial view is the primary angle used by doctors when identifying tumors in MRI scans. 
The model only used a subset of provided brain MRIs, approximately 549 scans  to demonstrate that GU-Net 
can be optimized for limited data. Then, to augment the data, the center 3 slices per brain MRI were taken, 
giving a final total of 1647 images. It is important to note that the MRI scans were split into training, validation, 
and testing in a 80/10/10 ratio before the scans were spliced to ensure that slices from the same MRI will not 
be present in training and validation/testing. 
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Figure 3. The different MRI modalities, visualized 
 

 
 
Figure 4. The top, frontal, and side view of the brain, provided in each MRI scan. 
 
Image Preprocessing 
 
Image pre-processing is necessary in order to prepare the data for efficient usage. Because U-Net is trained on 
two-dimensional data, we first converted our data from three-dimensional NIfTI files to two-dimensional image 
slices by taking the center 3 slices of each image. This resulted in a total of 1647 images. We normalized the 
intensity values of each image by clipping the range to be 0 to 1. Then, we preprocessed each image’s pixel 
intensity values to clean the data. We started by normalizing the intensity values of each image in order to 
increase the efficiency of our model. Because intensity values in some of the files were negative, we subtracted 
the minimum pixel intensity value of each file from every pixel in that file. This caused every intensity value 
to be a positive number; this then allowed us to divide each intensity value in each image by the maximum 
intensity value in each image, hence clipping the intensity values per image to be from 0 to 1. Then, we set a 
lower threshold value for pixel intensity in order to filter out any regions that had an intensity value but were 
not bright enough to be part of a tumor, lowering the size of each file. We used a threshold value of 0.3, which 
we observed to be an effective threshold for maintaining the whole tumor while removing unnecessary parts of 
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the image. In order to generalize the data, we rotated the images 0, 90, 180, and 270 degrees in a 1/1/1/1 ratio. 
The generalization of data helps avoid overfitting. 
 
Architecture 
 
Our model architecture is derived from Rehman et al’s BU-Net, which expanded upon the original U-Net ar-
chitecture with two additional building blocks: the WC and RES block. The BU-Net model structure is depicted 
in Figure 5. The WC block consists of two convolution layers with one dimensional kernels. Its primary usage 
is to expand the output into a larger channel size, as the data passes through it just before upsampling begins. 
Meanwhile, the RES block is similar to the WC block, but includes various convolution layers that decrease in 
kernel size, as well as a skip connection that is concatenated to the added output of all convolution layers. The 
RES block is inserted in the copy bridge between the downsampling and upsampling layers. The novelty in 
GU-Net compared to BU-Net, as depicted in Figure 6, is primarily the reduction of layers. To combat overfitting 
on the limited data, we removed two encoder-decoder layers from the architecture. Additionally, we imple-
mented an L2 weight regularization, or weight decay, of 0.01. Thus, we felt that there was not a need for dropout 
after each double convolution due to these modifications. However, we did increase the number of kernel chan-
nels, or filters, to better understand the data compared to the BU-Net architecture. To better suit the type of data 
we had, we decided to use average pooling over max pooling simply because average pooling retains more data 
compared to max pooling, which we found was crucial for our model to train better. We also used the Xavier 
normal weight initialization algorithm to initialize all of the convolution and transposed convolution layers in 
GU-Net whilst BU-Net uses He initialization. Our implementation of the model architecture was designed in 
the Pytorch programming framework. 
 

 
 
Figure 5. BU-Net Architecture 
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Figure 6. Proposed GU-Net Architecture 
 
Training 
 
Training GU-Net was fairly straightforward. We used a simple training loop to gradually update weights over 
62 epochs. We found that using the Adam optimizer in conjunction with a learning rate of 0.001 yielded the 
best overall results, as the algorithm decreases the learning rate over time as the model learns more information 
to prevent overfitting. As previously mentioned, a weight decay of 0.01 was also used to reduce overfitting. We 
developed a custom loss function composed of the dice similarity coefficient converted into a loss function by 
subtracting it from 1 and binary cross entropy with Logits, added together. The dice loss was weighted at 0.9, 
while the BCE loss was weighted at 0.1 because we decided that due to the segmentation problem we were 
solving, dice would be a more important metric to define loss by, and BCE was not as important. The loss 
function is depicted in (1). Our training loop included the training batch iteration, which took in data in shuffled 
batches of 8 and ran a forward and backward pass, and the validation batch iteration, which used validation data 
in shuffled batches of 1 to evaluate the performance of the model. We then saved the model which had the 
highest validation dice similarity coefficient at that point, creating an “early stop” in the training once the vali-
dation got to the highest point. Finally, after every 10 epochs, the model was tested on unseen data in order to 
evaluate the final dice similarity coefficient and intersection-over-union.  
 

𝐿𝐿(𝑋𝑋, 𝑌𝑌) = 0.9 �1 −
2|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|� + 0.1(−(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌(𝑋𝑋) + (1 − 𝑌𝑌)𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑋𝑋))) 

 
Equation 1: Mathematical representation of weighted Dice-BCE loss function. 

 

Results 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
2|𝑋𝑋 ∩ 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|  
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Equation 2: Mathematical representation of the Dice Similarity Coefficient. 

In order to evaluate the effectiveness of our model, we used the dice similarity coefficient (DSC). The 
DSC is used by previous state-of-the-art models, making it the best method to compare the results of our archi-
tecture to other neural networks. The DSC is represented in Equation 2. The DSC gives weight to the intersec-
tion between the two separate areas (represented as X and Y) and divides by the total area between the two 
areas. In this case, we compared our predicted segmentation mask with the given segmentation mask from the 
dataset.  
 
Table 1. Evaluation of GU-Net model to evaluation of BU-Net and U-Net with no data constraints 
 

 
Table 2. Evaluation of GU-Net model to evaluation of BU-Net and U-Net with data constraints 
 

 
Table 3. Table displaying results of evaluation of GU-Net’s Train, Test, and Validation split 
 
 

 
 
 
 
 
 
 

 

 
Dataset 

Used 
# of Training 

Slices 
Test Data Dice 

Similarity Coefficient 
Test Data Intersection 

Over Union 
# of 

Parameters 

Our Model 
(GU-Net) 

BraTS 
2021 

45,210 0.816 0.723 ~22.6 million 

U-Net BraTS 
2021 

45,210 0.860 0.816 ~30 million 

BU-Net BraTS 
2021 

45,210 0.901 0.874 ~81.3 million 

 
Dataset 

Used 
# of Training 

Slices 
Test Data Dice 

Similarity Coefficient 
Test Data Intersection 

Over Union 
# of 

Parameters 

Our Model 
(GU-Net) 

BraTS 
2021 

1,320 0.716 0.643 ~22.6 million 

U-Net BraTS 
2021 

1,320 0.672 0.611 ~30 million 

BU-Net BraTS 
2021 

1,320 0.613 0.554 ~81.3 million 

 
# of Slices Dice Similarity Coefficient Intersection Over Union 

Training 1,320 0.927 0.864 

Testing 165 0.716 0.643 

Validation 162 0.752 0.627 
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Table 1 shows GU-Net’s testing DSC compared to BU-Net and U-Net when given the same amount 
of training data as those models. The BU-Net and U-Net model code was obtained, and the models were trained 
and evaluated on the BraTS 2021 dataset along with GU-Net. Adding on, Table 2 shows the models’ perfor-
mances when operating with merely a subsection of the original dataset. The fact that the DSC and IOU of GU-
Net dropped only ~10% under data constraints compared to the  ~20% of U-Net and ~30% of BU-Net demon-
strates GU-Net’s proficiency at operating under data constraints.  0.1 Taken together, the two tables show the 
relationship between the data constrained GU-Net and the normal U-Net and BU-Net. With only 2.9% of the 
training data that the normal U-Net used, and 2.0% of the training data that normal BU-Net used, the data 
constrained GU-Net achieves 88.4% of U-Net’s DSC and 79.7% of BU-Net’s DSC. This demonstrates GU-
Net’s proficiency in achieving meaningful results even when trained on very low amounts of data, prompting 
further work testing GU-Net’s capabilities when given amounts of training data comparable to that of current 
state-of-the-art models.  

GU-Net was developed and trained solely on one GPU to continue with its goal of using minimal 
resources so that it could be used in underprivileged areas. However, if given the time and computational re-
sources that current state-of-the-art models use, a boost in performance would likely have been observed. 

Table 3 represents the DSC and IOU GU-Net achieved for training, testing, and validation. It also 
displays the 80/10/10 data split used to train, test, and validate the model. Because the training DSC and IOU 
of the training data are significantly higher than that of the testing and validation data, we can assume that the 
model overfit on the training data and lost some of its ability to generalize and account for unseen data. This 
phenomenon can usually be combated by further regularization to further simplify the model, meaning that 
increasing L2 strength or adding a dropout layer may be necessary for further hyperparameter tuning.  
 

Conclusion 
 
In this paper, we proposed, created, and tested a novel neural architecture, dubbed GU-Net, that is specifically 
optimized for brain tumor segmentation. Our model is inspired from the BU-Net architecture; however, we 
changed the architecture to fit our data constraints by deleting 2 layers and simplifying the convolutional layers. 
Using a subset of only 1647 images from the BraTS 2021 training dataset, we split the images into a 80/10/10 
ratio for training, validation, and testing. Through this, GU-Net proves to have comparable results to existing 
state-of-the-art methods.  

One limitation GU-Net faces is the lack of training with brain MRI images without tumors. The model 
was trained solely on images with tumors, so when a brain MRI without a tumor is introduced, GU-Net will 
produce a mask of a nonexistent tumor. Another limitation GU-Net faces is worse DSC and IOU with smaller 
tumors. This phenomenon is due to its simplified architecture. Because of the smaller number of trainable pa-
rameters in GU-Net, it produces segmentations with less detail than conventional state-of-the-art models; there-
fore, it sometimes enlarges or skips over small tumors.  

The structure of the model is proficient, but can certainly be improved upon in the future. One imme-
diate plan to improve DSC and IOU is to continue changing the configuration of GU-Net, specifically by adding 
dropout layers after each pooling layer. Evaluating the model on other Kaggle datasets consisting of brain MRI 
scans to ensure its ability to generalize would be vital. Additionally, in the future we would test the model with 
other MRI formats that came with this dataset that were not used to train the model, namely T1, T2, and T1+C. 
Testing done with different MRI formats can improve the model’s DSC, and eventually training the model to 
be able to segment via multiple different formats would improve its usability and generalization.  
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