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ABSTRACT 
 
Diagnosis and prognosis of central nervous system (CNS) tumors rely on manual and algorithmic approaches 
that are subject to variations, inefficiencies and bias. With 5-year survival rates as low as 6%, timely tumor 
assessment is crucial to ensure patient health. Machine learning and deep learning techniques have been used 
over the past decade to reduce the assessment burden and augment physician diagnoses. Traditional machine 
learning models require manual feature extraction and engineering, introducing further variability of the results. 
On the other hand, automated deep learning models require complicated engineering and workflow implemen-
tations that need to be managed and updated for new datasets. This study endeavors to define a generalizable, 
two-phase neural network pipeline and user interface that can be applied to clinical assessment of any tumor 
with 3D MRI scans, allowing for improved personalization of patient diagnosis and treatment options. In the 
first diagnostic phase, radiomic features are used to predict tumor severity and extent. The outputs of this phase 
are then passed to a survival prognosis model along with the patients’ clinical data to predict the 5-year overall 
survival rate. The diagnostic model achieved a F1-Score, a measure of classification accuracy, of 94% and the 
prognostic model achieved a risk-adjusted, time-dependent Harrell’s Concordance Index score of 0.92, indicat-
ing the framework’s generalizability to new datasets. The mobile app developed as part of this study offer ease 
of access to physicians and radiologists in reviewing predicted results and subsequent patient interactions. 
 

Introduction 
 
Diagnosis and intervention at early stages of central nervous system (CNS) cancers are associated with im-
proved patient outcomes and increased chances of survival. Currently, magnetic resonance images (MRIs) re-
main the gold standard for non-invasive tumor diagnosis and pre-operative severity assessment (Meola et al, 
2018). However, a global shortage of radiologists (Henderson, 2022; European Society of Radiologists, 2022), 
especially in many rural areas and developing countries, and a lack of access to advanced MRI analysis tech-
niques (Frija, et al., 2021; Wuni et al 2021) is leading to suboptimal patient outcomes. Additionally, manual 
segmentation of MRI images is subject to observer bias, as different radiologists may analyze tumors with 
different methods (Maskell 2018). 

With recent advances in artificial intelligence, researchers have leveraged deep learning for tumor 
segmentation and classification (Pei et al., 2020; Palson et al, 2022), while others have implemented traditional 
machine learning based approaches to predict patient survival from clinical data analysis (Moreau et al., 2020). 
Leveraging radiomic image features along with patient clinical and demographic data offers an integrated ap-
proach to assessing tumor severity and extent, while also accurately predicting the patient survival rate (Cousin 
et al, 2023).  
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Radiomics refers to the extraction of quantitative image features from medical image scans such as 
MRIs (Zhang et al, 2023). These image features, which are not visible to the naked eye, are often not considered 
in tumor diagnosis and survival prognosis. Radiomics techniques offer high-dimensional, artificially engineered 
features that can aid in improving the prediction accuracy and precision of machine learning models in clinical 
oncology (Xue et al, 2021). However, there are concerns around the variability and reliability of these features 
due to the inherent variance in MRI images, image processing techniques, model development methodology, 
and workflow implementation (Xue et al, 2021). 

This study aims to address existing challenges prevalent in tumor severity assessment and patient sur-
vival prognosis by combining both tumor classification and patient survival prediction into a single unified deep 
learning workflow, where the radiomics features extracted from 3D MRI images are used to predict tumor 
extent, severity and overall survival probability. Developing an integrated, generalized deep learning workflow 
to perform both diagnosis and prognosis offers a simplified framework that can be tested and leveraged for 
multiple clinical imaging applications and extended to support oncological assessments for various cancers. 
 

Methods 
 
Data Acquisition and Patient Selection 
 
This study used 3D MRI image data and deidentified patient clinical data from The Cancer Imaging Archive's 
(TCIA) REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) collection (Clark K et al., 2013). 
The REMBRANDT dataset consists of patient MRI scans in the Digital Imaging and Communications in Med-
icine (DICOM) format, and the associated patient’s clinical data in Excel format. The REMBRANDT project 
was created at the National Cancer Institute and funded by the Glioma Molecular Diagnostic Initiative. The 
data was collected from 2004-2006 from two institutions, Thomas Jefferson University and Henry Ford Hospi-
tal and consists of 128 patients. 32 patients were excluded from this study as they had no clinical or demographic 
data to aid in survival prognosis. Of the remaining 96 patients, an additional 16 were excluded as they had no 
labeled MRIs scans. The final study cohort consisted of 80 patients that had both labeled MRI scans and asso-
ciated clinical data. 
 
Exploratory Data Analysis 
 
An initial exploration of the clinical data associated with the REMBRANDT MRI images was conducted to 
assess their quality and usability. The data covers three CNS tumor types: Glioblastoma, Astrocytoma, and 
Oligodendroglioma. Patients range in age from 10 years to over 85 years. Other important treatment information 
is also included, such as type of radiation therapy received, patients' Karnofsky Performance Status (KPS), type 
of chemotherapy received, patient vital status (alive or deceased) at the end of the study, and the number of 
survival months from initial diagnosis. The dataset was split into training (50%), validation (25%), and test 
(25%) subsets. 
 
Deep Learning Workflow 
 
A two phase deep learning framework was designed and developed as part of this study. Prior to model training, 
the 3D MRI scans were preprocessed to normalize image size and pixel intensity. In the first phase of the deep 
learning framework, the normalized scans, along with the clinical data were used as inputs to train a Convolu-
tional Neural Network (CNN) model that predicted tumor type, tumor grade and the Karnofsky Performance 
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Status (KPS). In the second phase, these predicted outputs from the classification model, along with the radio-
mic features and patient clinical data were fed into a survival prognosis model. The trained models were then 
deployed on the Amazon Web Services (AWS) cloud platform for inference using a Flask application server. 
An iOS mobile app and a web app were developed as two separate user interfaces, allowing a physician or 
radiologist to upload patient MRI scans and review predicted results. (Figure 1).  

 
 
Figure 1. Overview of the Data Processing, Deep Learning and User Interface Pipeline 
 
Phase 1 - Tumor Classification 
 
Convolutional Neural Network (CNN) models are a class of deep learning models used in radiology applica-
tions to segment and classify tumors. This class of models adaptively learns spatial hierarchies of radiomic 
image features through multiple building blocks or layers, such as convolution layers, pooling layers, and fully 
connected layers (Yamashita et al., 2018). ResNet, short for Residual Network, is a class of CNN models that 
have found application in medical classification tasks and are shown to perform better than other CNN models 
(Bressem et al., 2020). In this phase, a ResNet neural network class was constructed, and a forward propagation 
function was defined. For this study, seven different Resnet models were trained on the REMBRANDT dataset, 
and their performance was evaluated – Resnet-10, Resnet-18, Resnet-34, Resnet-50, Resnet-101, Resnet-152, 
and Resnet-200. The seven ResNet models were each trained for 50 epochs, or training instances, keeping the 
hyperparameters constant. The training loss, validation loss, accuracy, precision, F-1 score, and recall for each 
model and each training epoch were collected in arrays for plotting. All models were trained on a Google Colab 
Pro+ platform, with a V100 GPU, 84 GB RAM and 250GB disk storage space. Model training optimization 
was conducted using the cross-entropy loss function (Equation 1). 
 

𝐿𝐿 =  −
𝑖𝑖
𝑚𝑚
�𝑦𝑦𝑖𝑖. log (𝑦𝑦�𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

 
Equation 1. Cross-entropy loss function to measure the difference between predicted class probabilities 

and true class labels. 
Accuracy for classification models is defined as the ratio of correctly predicted instances to the total 

number of instances. Although accuracy is commonly used to measure performance, it is not the best indicator 
when there is a skew in the dataset. To account for the skew in the REMBRANDT dataset, relevance metrics 
including Precision, Recall and F1-Score were calculated to assess model performance. Precision, also known 
as the positive predictive value, is defined as the fraction of relevant instances among the number of retrieved 
instances. Recall, also known as Sensitivity, is defined as the fraction of relevant instances that were retrieved. 
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F1-Score, also known as the harmonic mean of Precision and Recall (Equation 2) was used to measure model 
performance.  
 

𝐹𝐹1 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

 
Equation 2. F1 Score, the harmonic mean of a model’s precision and recall 

Phase 2 - Survival Prognosis 
 
Two machine learning models, Cox Proportional Hazards and Random Survival Forest and one deep learning 
model, Deep Survnet were trained on the REMBRANDT dataset for survival prediction. The most commonly 
used linear covariate regression survival model is the Cox Proportional Hazards model (George et al, 2014; 
Matsuo et al, 2018; Houwelingen et al, 2015). This was compared with the non-linear covariate Random Sur-
vival Forest model, which has been used in studies for overall survival prediction of cancer patients (Kalafi et 
al, 2019;  Roshanaei et al, 2022; Amabale-Venkatesh et al, 2017). Deep Survnet was chosen to be the model 
for survival prognosis prediction that was integrated into the final framework since it yielded the best predictive 
performance.  

To evaluate the prediction performance of survival models against right-censored data, in which the 
outcome is unknown, Harrell's and Uno's concordance index (c-index) was measured (Kremer, 2007).  The 
Integrated Brier Score (IBS), a metric which is an extension of the mean squared error to account for right-
censored data (Goldstein-Greenwood, 2021), was used to measure the overall performance of the models be-
tween specific time points. The IBS score (Equation 3) was calculated between the 10th and 90th percentile of 
data and a 5-fold cross validation technique was used to reduce overfitting. The models were tested against an 
unseen subset of the patient clinical data, and images taken from the test set and their predictions compared 
against the ground truth classifications of tumor grade, severity, and KPS provided by physicians at the Henry 
Ford Hospital. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑁𝑁

 �(𝑓𝑓𝑡𝑡 − 𝑜𝑜𝑡𝑡)2
𝑁𝑁

𝑡𝑡=1

 

 
Equation 3. The integrated weighted squared distance between the estimated survival function and the 

empirical survival function. 
 

Model Deployment for Inference 
 
The tumor classification and the survival prognosis models were trained and evaluated on the Google Cloud 
platform. Google Colab, a Python Notebook interactive development environment was used to program the 
models. The trained models were saved as Pickle files (.pkl) for subsequent usage in generating predictions or 
inferences. The saved model files were then transferred to an Elastic Cloud Compute (EC2) instance on the 
AWS cloud platform. The Flask application server software was used to develop a model inference service that 
supported Application Programming Interfaces (API) calls to run the model prediction and return the results to 
the user. 
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User Interface Development 
 
Two separate user interfaces were developed to allow physicians and patients to interact with the models. The 
first user interface is a web based application that can be accessed through a browser on a personal computer. 
This allows the technician to upload the MRI images and clinical data through a secure website for processing 
and prediction. The second user interface is a mobile iOS app that can be accessed through a tablet or phone. 
Physicians would be able to use this to view the prediction results and for interactions with the patients. 

The frontend for the web app was designed and developed using ReactJS libraries and HTML5. Data 
exchange for image and clinical data uploads was handled through Representational State Transfer (REST) API 
calls, which allow two systems to exchange data securely and reliably over the internet using the REST archi-
tecture guidelines. The mobile app was developed using the Swift language and XCode software (Figure 2). 
Data was exchanged with the APIs in JSON format using the SwiftyJSON library. The API interactions in the 
mobile app were handled through the AlamoFire software library. 
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Figure 2. iOS Mobile App Interface Showing Predicted Diagnostic and Prognostic Results 
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Results 
 
Phase 1 - Tumor Classification 
 
All seven trained ResNet classification models were used to run inference against the test dataset of twenty 
patients and results were documented. The Accuracy, Precision, Recall and F1-Score were calculated to evalu-
ate model performance (Table 1). The ResNet-18 model was observed to have the highest F1-Score of 0.94 and 
was selected as the final model for inference. 
 
Table 1. Model Performance Metrics of ResNet Classification Models on the Test Dataset 
 

Model Accuracy Precision Recall F1-Score 

Resnet-10 0.64 0.52 0.53 0.5249 

Resnet-18 0.94 0.94 0.95 0.9449 

Resnet-34 0.72 0.88 0.9 0.8898 

Resnet-50 0.75 0.89 0.91 0.8998 

Resnet-101 0.78 0.67 0.69 0.6798 

Resnet-152 0.52 0.42 0.42 0.4200 

Resnet-200 0.86 0.92 0.94 0.9299 

 
A multiclass confusion matrix was constructed from the predicted results of the ResNet-18 model for 

each of the three prediction classes, tumor type (Figure 3a), tumor grade (Figure 3b) and KPS (Figure 3c). It 
was observed that the classification model accurately predicted the Glioblastoma tumors in 100% of the test 
cases, followed by Astrocytoma (73%) and Oligodendroglioma (50%). The model predicted tumor Grade 4 
accurately in 100% of the test cases, Grade 3 in 67% of the test cases, and Grade 2 in 67% of the test cases. The 
predicted KPS was most accurate for KPS-100 at 90%, followed by KPS-90 at 67% and KPS-80 at 67%. 
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Figure 3. ResNet-18 multiclass confusion matrix for predicted class labels 
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Phase 2 - Overall Survival Prognosis 
 
Kaplan-Meier curves were generated for each significant independent variable to assess its impact on patient 
survival. Figure 7 shows patient survival probability over time based on KPS scores and chemotherapy. Lower 
KPS predicts reduced survival time compared to higher KPS scores (Figure 4a). Similarly, patients who under-
went chemotherapy had better survival than those who did not (Figure 4b). 
 

 
 
Figure 4. Kaplan-Meier plot of overall survival probability 
 

The Deep Survnet model was identified to be the best performing survival prognosis model with the 
highest Harrell’s Concordance Index score and the lowest time-dependent Integrated Brier Score among the 
three model types tested (Table 2). 
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Table 2. Comparative Performance Scores of Survival Prognosis Models 
 

Model Harrell’s C Concordance 
Index 

Uno’s C Concordance 
Index 

Integrated Brier Score 

Random Survival Forest 0.91 0.88 0.189 

Cox Proportional Hazards 0.73 0.71 0.175 

Deep Survnet 0.92 0.93 0.0577 

 
The time-dependent Area under the ROC Curve (AUC) shows the accuracy of survival prediction over 

time. Deep Survnet surpassed the Cox Proportional Hazards model and the Random Survival Forest model with 
a mean AUC of 0.95 (Figure 5). 
 

 
 
Figure 5. Time-dependent AUC comparison of survival prognosis models 
 

Discussion 
 
Tumor Severity and Extent 
 
It was observed that the model predicted Glioblastoma tumors most accurately followed by Astrocytoma. This 
could be due to the fact that Glioblastoma is the most aggressive type of Astrocytoma, both tumors affecting 
glial cells called astrocytes (Appin et al, 2013). Similarly, Grade 4 was most accurately predicted by the model, 
potentially due to the extent of tumor growth in the MRI scans.  
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Class Weightage 
 
The REMBRANDT dataset was skewed across all predictive classification classes, with 82% of the clinical 
data representing Caucasian patients, 55% of the Axial FLAIR MRI scans corresponding to the Astrocytoma 
tumor subtype, and 42% of the cases having Grade 2 tumor severity. Initial model training and performance 
evaluation conducted without balancing class weights yielded model performance of less than 60% accuracy 
for all model variants. To ensure the estimator was equally informed of all classes, the data had to be balanced 
to assign specific importance to classes that were under-represented in the data distribution (Table 3). Adjusting 
the class weights to balance the dataset resulted in model accuracy of over 90%. Class weights for each class 
were calculated using the equation 𝑤𝑤𝑗𝑗 = 𝑛𝑛

𝐾𝐾𝑛𝑛𝑗𝑗
, where wj indicates the weights of the classes, K the total number 

of classes, n the number of observations, and nj the number of observations in each class. 
 
Table 3. Distribution of Classes in REMBRANDT Data and Balanced Weights used for Model Training 
 

Class Category Class Labels Distribution of Class in 
Dataset 

Balanced Weight Used for 
Training 

Tumor Type Oligodendroglioma 19% 0.811320755 

Astrocytoma 55% 0.452830189 

Glioblastoma 26% 0.735849057 

Tumor Grade Grade 2 42% 0.58490566 

Grade 3 32% 0.679245283 

Grade 4 26% 0.735849057 

 
Tumor Classification 
 
Classification model performance is dependent on optimal tuning of the deep learning model’s hyperparame-
ters, especially when the data is imbalanced (Zhang et al. 2022). The batch size (Figure 6a), learning rate (Figure 
6b) and weight decay (Figure 6c)hyperparameters were tuned in turn over a period of five trials, and the most 
optimal value of each hyperparameter was chosen for model development. A batch size of 32, a learning rate 
of 0.0001, and a weight decay of 0.0001 were identified as optimal as the validation loss was lowest and F1 
Score the highest for these hyperparameter values. The cross-entropy loss validation results show that ResNet-
18 (Figure 7b) and ResNet-200 (Figure 7g) produce the most optimal fit. ResNet-18 performed better than 
ResNet-200 on unseen test data as measured by statistical metrics and was chosen as the final model for de-
ployment (Table 1). 
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Figure 6. Hyperparameter tuning and optimization trials 
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Figure 7. Training and validation losses of ResNet models over a 50 epoch training period 
 

AdamW, the adaptive optimizer with weight decay was used instead of the standard Adam optimizer, 
as it has been shown to result in better model generalization (Loshchilov, 2019). Early stopping, a form of 
regularization, was used to avoid overfitting the training dataset. This was accomplished by tracking the vali-
dation loss throughout the training process using the Pytorch logging function. The training process was stopped 
if the validation loss did not decrease for 10% of the total number of training epochs (Figure 8). It can be noticed 
that even though the total number of training epochs was 50, the validation loss reached its lowest at epoch 20. 
Since the goal is to minimize the validation loss for greater accuracy, the training was stopped at epoch 20, as 
continuing the training would not yield better accuracy. On the contrary, the model shows signs of overfitting 
and increasing validation loss beyond epoch 20. 
 

 
 
Figure 8. Optimizing validation loss using early stopping on a 50 epoch sample training iteration 
 
Survival Prognosis 
 
In all metrics of performance (concordance indexes, Integrated Brier Score, and time-dependent AUC), Deep 
Survnet outperformed the Cox Proportional Hazards and Random Survival Forest models. Deep Survnet uses 
the backward elimination procedure technique, in which the model gradually eliminates all the features that are 
irrelevant to prediction and automatically identifies the features with the most predictive power (Wang et al, 
2020). Doing so helps Deep Survnet control false discovery rates during training, so it does not focus on varia-
bles with minimal predictive power.  

In the REMBRANDT dataset, the occurrence of the significant event (death of the patient) spans a 
duration from within a month of diagnosis, to over 120 months after initial diagnosis. The survival prediction 
model performs best between the 10th and 80th percentile of this duration span. That is, the Brier Score demon-
strated the worst model performance when the prediction was for patients who were alive for less than a year 
or more than eight years after diagnosis. This is expected behavior, since patients within the 10th percentile do 
not contain several predictive features such as the chemotherapy and radiation therapy used, or whether there 
was a recurrence in the tumor, all of which are significant predictors of survival. Similarly, patients alive for 
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over eight years offer minimal distinct features. The model performs best in the desired 1 - 5 year survival 
duration, which is regarded as the most appropriate prediction window for survival assessment, treatment and 
palliative care programs (Liu et al, 2017; Sarveazad et al. 2018). 

A cohort analysis was performed to compare survival prediction for patients with similar characteris-
tics (Figure 9). Five patients with the same tumor type (Oligodendroglioma), and similar demographic back-
ground (females between the ages 60 - 70) were chosen as part of a cohort. However, their treatment plans were 
different, leading to differing survival outcomes. As expected, Patient 1, who had not received chemotherapy 
or surgery showed a lower probability of survival compared to Patient 5, who had surgery, chemotherapy and 
radiation therapy treatments. It can also be seen that Patient 3 and Patient 5 who had received chemotherapy 
show very similar survival probabilities. This novel technique could allow physicians to conduct treatment 
scenario analysis on new patients to understand how different treatment options could impact overall patient 
survival. 
 

 
 
Figure 9. Comparative survival analysis of patient cohorts with similar tumor characteristics 
 

Conclusion 
 
This study leveraged an ensemble of deep learning models to diagnose CNS tumor severity and extent, and 
predict the patient’s 5-year overall survival rate. The diagnostic classification model was able to achieve a high 
level of Precision and Recall, indicating its generalizability on unseen CNS tumor datasets. The prognostic 
survival prediction model achieved a high AUC score, also showing that it is able to predict survival rates for 
patients with different demographic and treatment backgrounds. The study and model performance was con-
strained by the limited amount of patient data and the sparse nature of available clinical information in the 
REMBRANDT dataset. However, due to the reusable nature of this deep learning framework, it can be extended 
to cover other cancer types and subtypes. As shown in this study, model performance reaching medically ac-
ceptable percentages can be achieved even on moderate datasets. Future analysis includes leveraging other brain 
and CNS cancer studies such as The Cancer Genomic Atlas (TCGA), UPenn-GBM study, and clinical data 
from the SEER cancer database to improve the prediction accuracy of the neural network models. 
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Limitations 
 
The study was constrained to a cohort of 80 cases that had both imaging and corresponding clinical data, re-
sulting in a limited dataset for neural network model training. Although the REMBRANDT study included 
patient data from two institutions, the cases from Thomas Jefferson University had no associated clinical data 
and was excluded from the study. The model was hence trained on a comparatively small dataset from a single 
institution, which may limit its generalizability to unseen data from other institutions. 
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