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ABSTRACT 

Machine learning (ML) has been a very effective tool for arrhythmia detection and classification using electro-
cardiograms (ECGs). However, in order for patients and healthcare professionals to trust the ML models, the 
models have to be interpretable to show how they arrived at a certain conclusion. We present an ML model that 
uses the Deep k-Nearest Neighbors framework in order to produce example-based explanations and uncertainty 
estimations. These examples are ECGs similar to the input derived from conducting a nearest neighbor search 
on encoded samples (which are values of a layer of the neural network after passing dataset samples through 
it). We introduce a new technique of using these example-based explanations in conjunction with saliency maps, 
and also use a neighbor-based uncertainty estimation technique. We show that the saliency maps provide good 
explanations, but the neighbor examples are needed to assess the credibility of those saliency maps. Our uncer-
tainty estimations increase the accuracy of the model from 86% to 93% (when measured with coverage of 76%). 
Overall, our novel methods prove to be a promising solution in the field of interpretable ML for arrhythmia 
classification. 

Introduction 

About 1 in 20 people in the U.S. have an arrhythmia - also known as irregular heartbeat[1]. According to the 
CDC, by 2030, 12.1 million people in the U.S. will have atrial fibrillation, a very common arrhythmia which 
can increase the risk of stroke by fivefold[2][3]. Early detection and classification of these diseases is imperative 
for better treatment[4].  Electrocardiograms (ECGs) provide a non-invasive method of measuring the electrical 
activity of the heart, and can provide information regarding the presence and type of arrhythmia for a patient. 
However, the processing of these ECGs is a time-consuming process (can range from the day of procedure to 
several weeks[7][8]) as it requires professionally trained physicians to manually identify and classify irregular 
heartbeats - a task that can be automated[6].  Therefore, there is a need for automated ECG processing for the 
identification of heart arrhythmias. 

For such automation, machine learning (ML) has been a very effective tool for arrhythmia identifica-
tion[9].  Rajpurkar et. al have developed an ML model for arrhythmia identification through ECGs that provided 
accuracy similar to that of a cardiologist[10].  Other researchers have also developed ML models for this appli-
cation.  While these models have high accuracy, many do not have the ability for the doctor or patient to under-
stand why the model came to a certain conclusion.  This means that the model cannot have that much credibility 
as it cannot display reasoning, leading to the model becoming unusable in many of such critical situa-
tions[14][15].  In other words, in order for these ML models to be integrated into current healthcare, they have 
to be interpretable[16]. 

Interpretable ML for arrhythmia identification and classification is a relatively nascent field[17]. 
There has been research such as techniques applying LIME[18], saliency maps[19], and also feature engineer-
ing/selection[20] for heart arrhythmias.  However, these techniques provide evidence from a prediction solely 

Volume 13 Issue 1 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 1



from the input ECGs (without comparing/constrasting to other ECGs), leading in some cases difficulty in in-
terpretation of the maps as they might not display an easily identifiable reason, making it difficult to use such 
information as evidence for a prediction[23].  Therefore, there is a need for using example-based explanations, 
where samples similar to the input (preferably from the model’s perspective) are shown to provide reasoning.  
We also use uncertainty estimation techniques to estimate the likelihood of an incorrect prediction. 
 

Methods 
 
We use the ML model architecture developed by Rajpurkar et. al, which has shown to provide (with training 
from their own large dataset) to be potentially better than a cardiologist[10].  We use the Physionet Challenge 
2017 dataset (vs. proprietary dataset used by Rajpurkar et. al) with labels consisting of Normal Sinus Rhythm, 
Atrial Fibrillation, and Other arrhythmias.  We then split our data into a training set, a reference set, and a test 
set. The reference dataset is for developing our interpretability methods, where we collect the values of a layer 
of the neural network after passing data from the reference dataset through it to get our encoded samples, as 
described by Papernot & McDaniel in their Deep k-Nearest Neighbors Neural Network[25].   Figure 1 shows 
the process to generate the encoded samples. Since the layer used had 256 dimensions, we applied Principal 
Component Analysis (PCA) to reduce the encoded samples’ dimensions to 10. 
 

 
 
Figure 1. Process showing how encoded samples are generated. Adapted from Rajpurkar et al. 
 
Example-Based Explanations Using Neighbors 
 
For a specific input, we conduct a nearest neighbor search through the encoded samples to find similar ECG 
samples from the model’s perspective (based on Euclidean distance).  We also add saliency maps, which show 
features most significant to the prediction, and use NeuroKit2[26] for labeling of ECG features (such as P-
waves) to aid in interpretation.  This ensemble of example-based explanations, saliency maps, and feature la-
belling brings much more insight into the model’s predictions. 
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Neighbor-Based Uncertainty Estimation 
 
For each sample, we find the nth nearest neighbor of the input which was predicted incorrectly. Figure 2 shows 
an example of the neighbors for a given input sample shown in grey, where red represents an incorrect predic-
tion and blue represents a correct one.  Here, the 6th nearest neighbor (n=6) to the grey sample is predicted 
incorrectly.  This implies that larger the n, the more correctly predicted neighbors, the higher the likelihood that 
the model predicts correctly (see Figure 3).  We then use this data (correlation between n and model’s correct-
ness on the prediction) in order to approximate the likelihood of a model predicting incorrectly given an input.  
Our experimentation provides more exact values for these probabilities. 
 

 
 
Figure 2. Nearest neighbor example.  Blue indicates correctly predicted sample, red indicates incorrectly pre-
dicted sample. 
 

Results 
 
Figure 3 shows a stacked histogram of the distribution of model accuracy on samples with respect to confidence 
values derived from uncertainty estimation.  Blue indicates correct predictions and red indicates incorrect ones.  
There is a clear positive correlation between n, which is the nth nearest neighbor that was predicted incorrectly, 
and the accuracy of the model. Our ML model achieved an accuracy of 86% (comparable to other models used 
with this dataset), which further increased to 93% after the use of uncertainty estimation methods.  This accu-
racy was measured with coverage of 76%, (with 74% accuracy in non-confident predictions).  It is important to 
note that the coverage-accuracy tradeoff can be adjusted. 
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Figure 3. Distribution of model accuracy on samples with respect to confidence values derived from uncertainty 
estimation.   
 

Figures 4 to 7 show results that are discussed in the next section.  

 
 
Figure 4. Example of an input signal (blue) with saliency maps (orange) and p-wave labelling (green) 
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Figure 5: Example of a neighbor to the input signal from Figure 4 
 

 
 
Figure 6. Misclassified neighbor comparison.  (A) poorly recorded ECG; (B) a neighbor.  The model associated 
the two samples by the noise of one sample with the noise of another. 
 

 
 
Figure 7. 3D t-SNE plot of the encoded samples (as derived in process shown in Figure 1).  Color signifies the 
label of the data point.  Points that seem to form a chain are ECG beats of the same patient. 
 

Discussion 
 
As shown in Figures 4 & 5, our nearest neighbor search was able to find similar samples to be used as explana-
tions.  For both the input in Figure 4 and neighbor sample in Figure 5, we display a plot which contains the 
signal itself, the model’s saliency map for that sample, and labelled P-waves from NeuroKit2.   The saliency 
map indicates that the model emphasized the region between (and including) the T-wave and the P-wave (Figure 
5).  This makes sense as atrial fibrillation has no P-wave and instead can comprise fibrillatory waves in the 
middle. This region can also be important for categorizing an input sample as “other”.  In this case, since both 
the input and its neighbor show presence of a clear P-wave among other reasons, the input is likely normal sinus 
rhythm (as predicted).   
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Along with using neighbors to infer on accuracy of our model predictions, we also utilize neighbors 
to infer on the validity of our saliency maps.  The similarity between Figures 4 & 5 shows that the saliency map 
does indeed indicate legitimate reasoning (with both saliency maps highlighting before the P-waves).  Figure 6 
shows how the model likely mistook the noise in the input for noise between T and the next P-waves of a 
neighboring sample.  This highlights the fact that without neighbors, it would be difficult to see whether the 
model’s reasoning was backed with good evidence or not.  Overall, saliency maps provide explanations and 
examples provide assessment of credibility to those explanations.  Therefore, our technique of using saliency 
maps in conjunction with neighbor-based examples is advantageous. 

It is important to note that our nearest neighbor search often gave dissimilar samples even with high 
model confidence.  We use t-SNE (t-Distributed Stochastic Neighbor Embedding), a dimensionality reduction 
technique on encoded samples to find pitfalls of our technique (Figure 7).  We find that there are regions where 
samples of different labels or regions with low number of samples have the most dissimilar neighbors.  This 
makes sense as there is not much data to support the interpretability methods in this region.  This can be 
amended with the use of large datasets (as shown by Rajpurkar et al.) instead, which we will leave for future 
work. 
 

Conclusion 
 
We introduced a machine learning model which utilizes both example-based explanations (using neighbor-
based analysis) in conjunction with saliency maps for interpretability in the application of heart arrhythmia 
classification.  We also used this neighbor-based analysis to develop a novel uncertainty estimation technique 
to find confidence values of a model’s prediction.  We showed the benefits of using both saliency maps and 
example-based explanations in ensemble to give explanations with credibility assessment, which other methods 
might not provide.  We hope to continue this research in the future in the form of utilizing larger datasets, in 
order to provide better and more diverse samples to use for example-based explanations and boost model per-
formance.  We also point to using CAM or GradCAM with the neighbor analysis as techniques to explore as 
well. 
 

Limitations 
 
The dataset used did have enough datapoints for the ML model to be able to train with effective accuracy, but 
it did not have enough diversity as compared with other proprietary datasets – such as the dataset used by 
Rajpurkar et. al.  Our Deep-kNN based approach, because of its reliance on datapoints neighboring each other, 
leverages highly diverse, abundant data in order to provide uncertainty estimations and interpretability.  We 
point to applying our proposed approach to these larger datasets as future work. 
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