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ABSTRACT 
 
Drug-drug interactions can cause adverse effects and impact patient safety. Traditionally, the prediction of DDIs 
has been labor intensive. However, these approaches have certain limitations in terms of scalability, 
convergence of different drug combinations, and capturing complex interactions. The potential combinations 
increase as the number of approved drugs increases; this results in the need for efficient methods. This research 
aims to utilize artificial intelligence and machine learning techniques to develop a method that accurately 
detects potential DDIs. The proposed idea allows for greater accuracy and automation in predicting DDI, 
reducing the time and cost required. The proposed method takes two drug formulas as input and employs a 
Drug Feature Extractor to extract their features. These features are then represented in feature maps, which are 
used when calculating a similarity score between input drugs and other drugs in the data set, and to predict 
potential DDIs. The model combines a drug similarity calculator and DDI predictor, enabling the system to 
process data in a “human-like” method; aiding in predicting interactions for newly developed drugs. The 
proposed model achieved state-of-art performance with an accuracy of 88.9%. The results demonstrate the 
efficacy of the proposed method in predicting potential drug interactions. 
 

Introduction 
 
Drug-drug interaction (DDI) is the reaction that occurs between two or more drugs when taken together; due to 
the presence of one drug, the effects or the toxicity of one drug can be altered. In some cases, it may be life 
threatening. Hence, identifying potential DDIs and managing them appropriately is crucial. The Diagnosis of  
DDIs is significant in the context of drug discovery and polypharmacy as it helps to ensure the safety and 
effectiveness of medications. With the growing numbers of drugs in the market, identifying potential DDIs are 
essential.  By discovering DDIs in the early drug development process, pharmaceutical companies can prevent 
drug withdrawals and avoid financial losses. Furthermore, polypharmacy is on rise. This increases a risk for 
drug interactions. Drug interactions can lead to adverse effects such as drug toxicity and drug ineffectiveness. 
Early identification of DDIs can help  prevent the risk of adverse outcomes. Therefore, it is significant to 
diagnose and discover DDIs to prioritize patient safety. 

The prediction of DDIs has been dependent on labor-intensive experimental studies and empirical 
observations. However, these approaches have certain limitations. As the number of approved drugs and 
potential drug combinations continue to grow exponentially, there is an increasing need for more efficient and 
accurate methods to predict DDIs. Therefore, there is a significant need for accurate and efficient methods to 
anticipate potential drug interactions. The use of machine learning in discovering DDIs can optimize the 
research process, making it more quicker, efficient, cost-effective, and atomized.  
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Background Knowledge 
 
Drug-Drug Interaction 
 

 
 
Figure 1. Possible drug interaction effects (NIH 2016). 
 
DDI are the reactions between two or more drugs when used simultaneously.  DDIs can lead to adverse drug 
reactions or drug ineffectiveness. There are various types of interactions including addition, permissive, 
synergistic, and tachyphylactic. Additional interactions occur when the effect of two drugs does not have an 
increase in the sum effect. For example, Aspirin has a blood thinning effect, however acetaminophen has 
analgesia effect, when they are used together, there are no additional side effects.  
 Permissive interactions occur when the effect of one drug is enhanced in the presence of another drug. 
Epinephrine itself can cause 40% vasoconstriction. When it is used with cortisol, the effect increases to 70%. 
Synergistic interactions are when the produced effect is greater than the sum of the individual effects of drugs. 
Clopidogrel and Aspirin both cause 30% of blood thinning. When they are taken together, the effect increases 
to 90%, which is larger than the sum of individual effects. Tachyphylactic interaction occurs when a drug’s 
effect diminishes due to repeated use and a decreased effectiveness over time. Using drugs that provide short-
term relief for extended periods decreases the effectiveness. Hence, it is crucial to understand the different types 
of drug interactions to avoid and identify adverse effects.  
 
Object Classification 
 
Object classification is a computer vision technique that determines a category of an object in an image or a 
video. The aim of object classification is to assign a class for objects based on its visual appearance. It is an 
essential task in the study of computer vision, as it holds significant importance in various fields such as object 
detection and medical image diagnosis.  

Object classification involves training a machine learning model to recognize the features that are 
unique to each object category. The machine learning model is trained on a dataset of various images with 
category labels throughout the training process the model learns to extract and identify visual characteristics 
and associate them with correct categories. There are several methods in developing an object classification 
system. Convolutional neural network (CNN) is a type of deep learning model that is suitable for object 
classification. They are designed to use convolutional layers and to extract features from images. 
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There are various CNNs models that have been developed for various computer vision tasks. Some of 
the well known systems include: AlexNet (Krizhevsky et al. 2012), VGGNet (Simonyan et al. 2014), and 
ResNet (He et al. 2016). Figure 1 illustrates an example application of object classification, the facial expression 
recognition system. This system takes a facial image as input and outputs one of the several facial expressions.  

 

 
 
Figure 2. Example of an object classification (facial expression recognition)  (Serengil 2018) 
 

In this research, the concept of object classification will be utilized to investigate the drug-drug 
interactions between two specific drugs. Chapter 3 will provide a comprehensive explanation of the detail 
process and the input and output components of the system.  
 
Drug Similarity 
 
The drug similarity estimator has a crucial role in the model as it incorporates human-like reasoning. Its purpose 
is to evaluate the similarity between newly created drugs and existing drugs. By utilizing a drug similarity 
calculator, the model can efficiently predict the degree of similarity; which aids in predicting DDIs. This helps 
make informed decisions during development and minimize risks. The drug similarity takes two drugs as an 
input and outputs a number between 0~1. 0 indicates that there are no similarities between the drugs. 1 indicates 
that they are identical. The similarity estimator utilizes pharmacokinetics and drug related data to calculate their 
similarity. 
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Figure 3. Four Key components of Pharmacokinetics (Paul 2021) 
 

Pharmacokinetics is the study of how the body reacts with the drug. It consists of four key components: 
absorption, distribution, excretion, and metabolism. Absorption is the process where a drug enters the 
bloodstream to be absorbed. Distribution Involves the drug’s transportation of various tissues and organs of the 
body. Metabolism is the process where the drug transforms into different compounds(metabolites). Elimination 
is a phase that removes the drug and its metabolites from the body. This is a crucial part of the intake of drugs 
because it can accumulate to toxic levels that lead to adverse effects. 
 Furthermore, the similarity calculator takes in the drug related data when calculating the similarity. 
Drug related data are: chemical structure, ATC code, target, side effect, drug-drug interactions, drug disease 
association, gene ontology, binding profiles, protein structures, etc,. Chemical structures are important as it 
provides information about the drug’s chemical properties, functional groups and bonding patterns. It helps to 
determine the drug’s behavior and interactions in the body. 

ATC code is a classification system to categorize drugs based on their therapeutic use and 
pharmacological properties. It provides a standardized way to identify and organize drugs according to their 
specific indications and mechanisms of action. Target refers to the specific molecule within the body that the 
drug interacts to produce the therapeutic effect. Understanding it will help clarify its mechanism of action and 
predicting its efficiency. Side effects are unintended effects that can occur when taking a drug. They will help 
make informed decisions regarding its use and monitor for any potential adverse reactions that may occur. 
Drug-drug interactions are effects that occur when two or more drugs are used. understanding it would help 
avoiding the harmful effects and assess the compatibility of different drugs. Drug disease association refers to 
the relationships between specific drugs and particular disease or medical conditions. It helps to identify which 
drugs may be effective in treating certain diseases and guide treatments. 

Gene ontology describes the gene functions and their relationships with the drug. It can be used to 
understand the genetic factors involved in drug responses, metabolism, and potential interactions. Binding 
profiles describe their interactions between drugs and their target molecules at a molecular level. This provides 
insight into dug’s affinity, specificity and mode of binding, which aids in predicting its effects and potential 
side effects. protein structures are the three-dimensional arrangement of atoms in protein molecules. 
Understanding structures can help identify specific proteins to modulate their functions. These different types 
of drug-related data contribute to the understanding of properties, mechanisms of action, therapeutic uses, 
potential side effects and interactions. Hence, it is crucial in discovery and development of drug-drug 
interactions.  
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These pharmacokinetic and drug related data will be considered when calculating the similarity of the 
drugs. The model will calculate the similarities of each different factor and output a number between 0 and 1 
which represents the similarities.  
 

Proposed Drug-Drug Interaction Prediction System 
 
This chapter presents a detailed review of the proposed method, addressing its functionality and the significance 
of the development of this network. The model functions by taking two drugs and extracting their unique 
features, which are then used to calculate a feature map. The model calculates the similarity between the two 
drugs based on this feature map and predicts potential DDIs as outputs.  
 

 
 
Figure 4. Overall architecture of the proposed method  
 

Traditional techniques of identifying DDIs rely on comparing the chemical structures of drugs. The 
addition of a drug similarity estimator allows the model to account for a broader variety of characteristics that 
may impact drug interactions and deliver more accurate predictions. As a result, the model can generate more 
precise predictions. 
 
Drug Feature Extractor 
 
The proposed system takes two drug formulas, DA and DB, as its input. The drug formulas are placed into the 
Drug Feature Extractor (DFE), which is defined as DFE in this system. DFE: Dk → F. DFE extracts features 
from DA and DB,  resulting in feature maps F that represent the content of DA and DB. Then the information 
contained in F is used to calculate the similarity score S and predict drug-drug interactions P. The similarity 
score S is calculated by Drug Similarity Estimator (DSE), which compares the feature maps of DA and DB to 
those of other drugs in the dataset. Finally, the Drug-Drug Interaction Predictor (DDIP) predicts potential 
interactions between DA and DB based on their respective feature maps. 

To evaluate the model’s performance, it is critical to calculate the appropriate loss of each task. The 
proposed model consists of two neural networks. Each serves a distinct purpose in estimating drug similarity 
and drug-drug interaction. 

The neural network responsible for drug similarity operates as a regression task. It aims to predict the 
exact value of the drug similarity input. The Mean Square Error (MSE) function is employed to evaluate the 
loss. The MSE loss function computes the mean of squared differences between the predicted and true values. 
By squaring the differences, it assigns higher penalties to larger errors due to the quadratic nature of the 
function. Thus ensuring the model's sensitivity to outliers or significant deviations from the true values. 

Equation 1: Mean Square Error Loss Function 
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Here, N represents the number of differences between the ground truth value and the predicted value 
Here, i denotes the specific predicted value and true value pair for each instance in the calculation of the squared 
difference. The variable gt and pred represents the ground truth value and predicted value of the input drug 
sample, respectively. 

The MSE loss function operates on the mean of squared differences between the predicted and true 
values. Through squaring the difference, it penalizes larger errors more heavily than smaller errors. This 
emphasizes larger errors, making the model more sensitive to extreme deviations from the true values. 

The Cross Entropy Loss Function is used to calculate the loss. The neural network for drug-drug 
interaction predictor is a classification program. It predicts the scores of each class and outputs the category 
with the largest value. Hence, Cross Entropy Loss Function is used.  

On the other hand, the neural network addressing drug-drug interaction prediction is a classification 
program. It generates scores for each class and selects the category with the highest value as the prediction. The 
Cross-Entropy Loss Function is employed to assess the loss. The Cross-Entropy Loss Function calculates the 
negative logarithm of the predicted probabilities for the correct classes. By doing so, it encourages the model 
to assign higher probabilities to the correct classes and lower probabilities to incorrect classes during the training 
process. 

Equation 2: Cross-Entropy Loss Function  
 

 
 

Here, P represents the predicted value of potential drug-drug interaction. The Cross-Entropy Loss 
Function calculates the negative logarithm of the predicted probabilities for the correct classes. This encourages 
the model to assign higher probabilities to the correct classes and lower probabilities to incorrect classes during 
training. To assess the overall performance of the model, the losses calculated from the Mean Square Error 
Function (drug similarity) and the Cross-Entropy Loss Function (drug-drug interaction) are combined. This is 
achieved by adding the individual losses together.  

Equation 3: Total Loss Function 
 

 
 

Here, an additional parameter, denoted as ɑ, is introduced to adjust the importance assigned to each 
task. The prediction of drug-drug interaction is considered more important compared to drug similarity. The 
value of "ɑ" aids in reducing the loss, despite its potential to be large, by appropriately balancing the 
contributions of the two tasks. By utilizing these customized loss functions and considering the relative 
importance of each task, the model can effectively optimize its performance in both predictions.. The value of 
ɑ is set as 0.8. 
 

Experimental Results  
 
Drug-Drug Interaction Dataset 
 
Table 1. Dataset 
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Benchmark Name Number of 
Drugs 

Number of Pairs Number of 
Interactions 

Number of  
Non-interactions 

DS1 (Zhang et al. 2018) 548 300,304 97,168 203,136 
DS2 (Wan et al. 2019) 707 499,849 344,112 465,437 

DS3 (Gottlieb et al. 2012) 807 651,249 10,078 641,171 
 
The model was trained using three datasets. The first dataset, DS1, consists of 548 drugs with a total of 303,304 
pairs. There are 97,168 drug-drug interactions and 2,023,136 pairs of non-interaction. The second dataset, DS2, 
includes 707 drugs with 499,849 pairs. There are 34,412 drug-drug interactions and 465,437 pairs of non-
interaction. The third dataset, DS3:CYP, comprises 807 drugs and 651,249 pairs. There are 10,078 drug-drug 
interactions and 641,171 pairs of non-interaction. For each dataset, 80% of the data was used for training the 
model and the remaining 20% was used for testing and evaluating its performance. 
 
Experiment Protocol 
 
In this research, I  applied the 5-fold cross validation technique to train and test the model. This method is often 
used due to its consistency. The data in one fold is divided into five pieces, where four subsets are utilized as 
training data, and one subset is used as validation Data set. This approach enables us to assess the model 
performance and make predictions by analyzing the errors. In the next fold, the validation set is changed. The 
subset that played the role of validation in the previous Fold becomes a part of the training set. This process is 
repeated 5 times as I have divided it into 5. 
 

 
 
Figure 5. 5-fold Cross Validation 
 

In this research, I employ a confusion matrix to evaluate the model’s efficiency. It is utilized to evaluate 
the model's performance by categorizing the model’s predictions into 4 parts. True positives, true negatives, 
false negatives, and false positives, represent instances that are correctly or incorrectly classified. In addition, 
the confusion matrix incorporates four evaluation metrics which are accuracy, recall, precision and F1-score.  

True Positives (TP) denote the instances correctly predicted as the positive class. True Negatives (TN) 
represent the occasions correctly classified as the negative class. False Negatives (FN) refer to instances 
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incorrectly classified as negative. Lastly, False Positives (FP) signify occasions incorrectly classified as positive 
classes. 

Equation 4: Precision 
 

 
 

The precision is calculated by dividing the true positives by the sum of true positives and false 
negatives. This represents the number of accurate predictions the model has made. 

Equation 5: Recall 
 

 
 

The recall is calculated by dividing the true positive by the sum of true positive and true negative. This 
shows the number of accurate predictions the model has made. 

Equation 6: F-Score 
 

 
 

The F-score is calculated by dividing the product of precision and recall by the sum of precision and 
recall.  
 
Performance Comparison 
 
Table 2. Performance comparison with state-of-the-art drug-drug interaction prediction methods 
 

 F-score on each DDI type Overall performance 
 Advic

e 
 

Effect 
 

Mechanism 
 

Int Precision Recall F-score 
 

(Quan et al.2018) 0.782 0.628 0.722 0.510 0.760 0.653 0.702 
(Liu et al.2016) 0.777 0.693 0.702 0.464 0.757 0.647 0.689 

(Asada and Sasaki 
2018) 

0.816 
0.710 0.738 0.458 0.733 0.718 0.725 

(Zhou et al.2018) 0.816 0.712 0.744 0.485 0.758 0.703 0.729 
(Sun et al.2019) 0.805 0.734 0.782 0.589 0.773 0.737 0.751 

(Xiong et al.2019) 0.835 0.758 0.794 0.514 0.773 0.737 0.754 
(Fatehifar and 

Karshenas 2021) 
0.829 

0.759 0.845 0.501 0.785 0.751 0.769 

(Mollina et 
al.2023) 

0.845 
0.862 0.884 0.784 0.837 0.850 0.843 

Proposed Method 0.891 0.870 0.912 0.810 0.885 0.893 0.889 
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Figure 6. Performance comparison result (line graph) 
 
In order to compare the proposed method’s performance,  a comparison with state-of-the-art drug-drug 
interaction prediction methods was run. Other prediction models included Quan et al.2016, Liu et al.2016, 
Asada and Sasaki 2018, Zhou et al.2018, Sun et al.2019, Xiong et al.2019, Fatehifar and Karshenas 2021, and 
Molina et al.2023. These methods were chosen due to their high accuracy.  Excluding the most recent Molina 
et al.2023, the other methods do not include a similarity calculator. As shown in figure 3, the proposed method 
outperformed all the state-of-art methods. It has surpassed Molina et al. 2023 -the most recent and accurate DDI 
predictor- by 0.891, 0.012, 0.028, and 0.026 for Advice, Effect, Mechanism, and Int, respectively. It achieved 
a higher precision by 0.048, recall by 0.043, and F-score by 0.046. This solidifies its effectiveness in accurately 
predicting DDIs. 

As represented in figure 6, the line on the graph is much higher than the other lines and is close to 1 -
1 is 100%, hence, the closer it is to 1, the higher the accuracy. The three points yield similar accuracy. Therefore, 
it can be seen that all parts show excellent results, with no one part being superior. 

In terms of overall performance, the proposed method demonstrates its superiority over the most recent 
approach. Among the various models analyzed, the proposed model stands out by achieving the highest scores 
in each category. The categories are: Advice, Effect, Mechanism, Int, Precision, Recall, and F-score. This 
achievement indicates that the proposed method has superior accuracy in predicting drug-drug interactions 
compared to other models. Furthermore, the performance of the proposed model surpasses even the most recent 
model, Molina et al. 2023. It has surpassed specifically in terms of F-score for each type of drug-drug 
interaction. Molina et al.2023 is the most recent method that includes a drug similarity calculator. Although it 
consists of the same characteristics the proposed model has, the proposed model has more variety of topics that 
is taken in  calculating the similarity calculation. This makes the model more advanced.  

The proposed method resulted in higher accuracy due to its specialized drug similarity estimation 
network. Its diverse information in drug similarity calculators has led to a better quality compared to other state-
of-art methods. This unique training strategy allows the Drug Feature Extractor to learn the patterns of inputs 
quickly and develops a higher accuracy, allowing our model to become superior. 
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Figure 7. Confusion matrix of the proposed method  
 

To clearly evaluate the accuracy of the model, experiment results were converted into a confusion 
matrix and a line graph. The table shown in figure two represents the experiment results that have been 
collected. A confusion above matrix is utilized to evaluate the model's performance by categorizing the model’s 
predictions into true positives, true negatives, false negatives, and false positives. The four categories are: 
advice, effect, mechanism, and int(unknown interaction).  

Advice is an output that is assigned when there could be recommendations or advice regarding the 
concomitant use of the input drugs. Hence, this suggests that the input drugs can be taken, as they do not have 
any adverse effects. The model has accurately predicted the class by 90.3%, indicating a strong ability to 
identify drugs with no adverse effects. Effect is an output that is assigned when the inputs contain 
pharmacodynamic mechanisms that include a clinical finding. Meaning that there is an increased toxicity or 
therapeutic failure. The second element represents the “Effect” category. The model has accurately predicted 
the class by 82%, which signifies the ability to recognise. Mechanism is an output that is assigned when the 
inputs contain pharmacokinetic mechanisms including changes in levels or concentration of the entities. 
Meaning, that there are adverse side effects when they are taken together. The third element represents the 
“Mechanism” category. The model has accurately predicted the class by 87%. Int, unknown interaction, is 
assigned when the inputs occur an interaction that does not provide any information about the interaction. 

Indicating that the drugs cannot be taken, as there might be adverse side effects. The model has 
accurately predicted the class by 92.5%. Overall, the diagonal component of the confusion matrix has a high 
accuracy. Indicating that the model is classifying the inputs into corresponding classes. 
 
Ablation Study  
 
Table 3. Ablation study result (drug similarity replacement) 
 

 Overall performance 
Mehtod Precision Recall F-score 
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Baseline 0.781 0.720 0.724 
DrugSimNet ATC1 0.824 0.817 0.845 
DrugSimNet MS2 0.837 0.854 0.839 
DrugSimNet GO3 0.885 0.893 0.889 

 

 
 
Figure 7. Ablation study result (line graph) 
 
To improve the accuracy of the DDI prediction, I have incorporated a drug similarity calculator. The drug 
similarity calculator uses various metrics representing a drug’s chemical characteristics. This model utilizes 
three metrics such as ATC code, molecular structure and gene ontology. These were used to calculate the 
similarity. The drug similarity calculator demonstrates a high accuracy - this was assessed by comparing with 
the ground truth values and finding the loss.  
 To evaluate the performance of the model, an ablation study was conducted. The model was tested  4 
times. First, it was conducted without any similarity information. Second, it was conducted with similarity 
information based on ATC code. Third, it was conducted with similarity information based on molecular 
structure-based. Lastly, it was conducted with similarity information based on Gene Ontology. The ablation 
study revealed that the drug similarity network based on Genetic Ontology information resulted in the highest 
performance. It had 0.885 accuracy for precision, 0.893 for recall and 0.889 for F-score. Baseline had 0.781 for 
precision, 0.720 for recall and 0.724 for F-score, making it with the lowest accuracy. The similarity network 
that utilized ATC codes has 0,824 for precision, 0.720 for recall and 0,724 for F-score, making it the third 
accurate. The one that used Molecular structure had 0.837 for precision, 0.854 for recall and 0,839 for F-score. 
This is the second most accurate approach.  
 

Conclusion  
 
The main goal of this research study was to accurately predict DDIIn this study. I have proposed a drug-drug 
interaction calculator that incorporates a drug similarity calculator to enhance the accuracy. The proposed model 
takes two drugs as an input and outputs the predicted DDIs and the drug similarity. The study explored how 
deep learning  Artificial Intelligence can enhance the accuracy and speed of drug-drug interactions. Through 
extensive experiments, I have explored the potential of deep learning and artificial intelligence to enhance the 
accuracy of DDI prediction. The results of the experiments have validated the superiority of our proposed 
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approach over the previous methods that did not integrate similarity calculators. This has enabled“human-like” 
thinking for our model. For future research, I plan to extend the application of the proposed method to find drug 
interactions between the FDA-approved new drugs and previous drugs.  
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