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ABSTRACT 
 
According to the World Health Organization, nearly 50 million people suffer from epilepsy, one of the most 
common neurological disease. Epilepsy is characterized by abnormal brain activity, leading to recurrent sei-
zures. Each seizure manifests as sudden, uncontrolled bursts of electrical activity in the brain, and the injuries 
and restrictions on daily life underscores the urgency of finding effective methods for epileptic seizure predic-
tion. With the use of deep learning techniques, early predictions of epileptic seizures, an unsolved problem, are 
attempted in this paper. Previous research has limitations of being sensitive to noise as it is dependent on spe-
cific electroencephalogram (EEG) devices and datasets, a serious issue this paper solves. In this paper, a semi-
supervised based domain generalization method to develop an accurate seizure prediction system is proposed. 
It consists of two phases: representation learning and transfer learning phase. To achieve high precision, the 
proposed method utilizes a representation learning approach. Here, a feature-swapping mechanism that effec-
tively disentangles seizure-related features is introduced. During transfer learning, the pre-trained network is 
trained to output the probability of whether the input EEG indicates a seizure or not.  The proposed model 
achieves state-of-the-art performance, with an accuracy of 90.53% and 94.88% on the NICU and Epileptic 
Seizure Recognition datasets respectively in within-dataset evaluations. It outperforms the previous methods 
by 19.35% in cross-dataset evaluations. This robust improvement opens up promising possibilities for real-
world clinical applications. The proposed feature disentangling method is also expected to contribute to devel-
oping reliable medical tools. 
 

Introduction  
 
Problem Definition  
 
Background 
According to the World Health Organization, nearly 50 million people suffer from epilepsy worldwide, making 
it one of the most common neurological diseases globally (World Health Organization, 2023). Only migraine, 
stroke, and Alzheimer’s disease are ahead in the list before epilepsy. Epilepsy is a neurological disorder char-
acterized by abnormal brain activity, leading to recurrent seizures, and can affect individuals of any age. Each 
seizure manifests as sudden, uncontrolled bursts of electrical activity in the brain, resulting in a wide range of 
symptoms depending on the affected regions such as the stiffening of the body, loss of consciousness or breath-
ing problems (Pruhiti et al., 2023). They are caused by a sudden abnormal, self-sustained electrical discharge 
that occurs in the cerebral networks and usually lasts for a few minutes (Rasheed et al., 2020). The unpredictable 
nature of seizures pose a significant threat to the life of those who suffer from epilepsy. The potential for injury 
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and the restrictions it imposes on daily life underscores the urgency of finding effective methods for epileptic 
seizure prediction.  
 
Seizure Detection from Electroencephalograms 
Seizures are detected using electroencephalograms (EEG), a test that detects abnormalities in the brain waves 
or in the electrical activity of the brain using small, metal discs (electrodes) attached to the scalp (Johns Hopkins 
University, 2023). During the recording, the electrode detects any electrical charges that result from the activity 
of the brain cells. The charges are then amplified and graphed for the healthcare provider to interpret the read-
ings. When epilepsy is present, seizure activity will appear as rapid spiking waves on the EEG recordings. Out 
of the several types of EEG tests, ambulatory EEG (aEEG) are commonly used to predict epileptic seizures in 
daily life as brain activity can be recorded throughout a few days, up to 72 hours. The electrodes are attached 
to a small portable EEG recorder, and patients can continue with most of their normal daily activities while the 
recording is being taken (National Health Service, 2023).  

The early detection of epileptic seizures in their pre-ictal states is crucial as seizures can have devas-
tating consequences, including physical injuries, loss of consciousness or even death if not treated. The ability 
to predict seizures in advance holds immense potential for minimizing these risks and improving patient out-
comes. Early detection allows individuals with epilepsy to take precautionary measures, such as moving to a 
safe environment, alerting a caregiver, or taking medication like anti-epileptic drugs. These kinds of timely 
administration of medication or other interventions can help mitigate the severity and duration of seizures. Early 
detection also offers individuals with epilepsy a sense of control over their condition, reducing their anxiety 
and thus empowering them to have the confidence to lead a normal life. 
 
Objectives and Significance of Research 
While significant progress has been made in the field of epileptic seizure prediction using EEG signals, further 
research is essential for several reasons. First of all, the accuracy of predictions needs to be enhanced. Although 
some existing prediction models have shown acceptable results, there is still room for improvement in terms of 
accuracy and reliability. In the medical field and the prediction of illnesses, reducing false negative errors are 
pivotal as the worst case is the illness not being detected properly.  

Secondly, two crucial problems that can be identified from previous research is that the models are 
sensitive to noise and are biased to specific datasets and EEG devices. However, as real-life EEG devices are 
not identical in number of nodes and sensitivity, the noise and datasets will not be uniform. Further research is 
needed to improve these problems, and I will prove how my proposed method is insensitive to noise and is 
independent from one dataset or EEG device.  
 
Previous Method 
 
This chapter presents a comprehensive review of the existing literature related to the detection of epileptic 
seizures via EEG signals. Throughout the chapter, key findings, methodologies, outcomes and limitations of 
selected studies will be analyzed. 

To address the aforementioned problem, various researches have been conducted. Before we analyze 
each research, a brief overview of the history in predictions of seizures with EEG signals and machine learning 
will be given.  

After the first international collaborative workshop on seizure prediction was held in 2004, numerous 
researchers attempted to predict epileptic seizures using EEG signals. The first research that showed the feasi-
bility of seizure predictions was “Identification of Epilepsy Seizures Using Multi-resolution Analysis and Ar-
tificial Neural Networks'' written by Pilar Gómez-Gil. The study presented an accuracy of 99.26 ± 0.26 %, a 
sensitivity of 98.93 % and a specificity of 99.59 %, using data provided by the University of Bonn (Andrzejak 
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RG et al., 2001). Although the accuracy was mentioned to be 99.26%, this paper has low external validity; thus 
practically can not be used in real life. After this study, epilepsy datasets were formed properly and techniques 
such as feature extraction in time and frequency and neural networks developed. Several selected developed 
researches will be analyzed in this chapter. 

Fang et al. proposed a seizure detection model using the Spatio-Temporal Gated Recurrent Unit (ST-
GRU) and Convolutional Neural Networks (CNN). They employed time-domain features and used the CHB-
MIT dataset. The accuracy achieved was 77.30%, making the biggest limitation low level of accuracy.  

Bizopoulos et al. utilized SoftMax activation and standard neural networks to detect seizures. They 
used the concept of 2D and 3D phase space presentations to capture the intrinsic mode and functions of EEG 
signals. It was conducted on the BONN dataset (Andrzejak RG et al., 2001), yielding an accuracy of 85.30%. 
Again, the biggest limitation was low detection accuracy.  

Yao et al. proposed a SoftMax and Long Short-Term Memory (LSTM) based model, using independ-
ent Recurrent Neural Networks (RNNs). The CHB-MIT dataset was used, and the accuracy was 88.80%. The 
study indicated limitations in terms of low sensitivity and precision. 

Yuan et al. applied the SoftMax and Sparse Deep Autoencoder (SpDAE) model, using frequency-time 
domain and Continuous Wavelet Transform (CWT) for feature extraction. The CHB-MIT dataset was used, 
and the study achieved an accuracy of 90.82%. However, there were limitations again in low detection accuracy.  

Turk and Ozerdem proposed a model that uses Softmax activation and 2D Convolutional Neural Net-
works (2DCNN), with frequency-time domain and Continuous Wavelet Transform (CWT) feature extraction 
techniques. The model used the Freiburg dataset and demonstrated an accuracy of 93.60%. However, the study 
had clear limitations of having low specificity for multi-class classification.  

Talathi and Vartak utilized Recurrent Neural Networks (RNNs), specifically Gated Recurrent Units 
(GRU) for seizure detection. The BONN dataset was used, and the accuracy was 94.00%. However, the model 
had limitations of high time complexity. 

San-Segundo et al. applied the SoftMax and 2D Convolutional Neural Networks (2DCNN) models, 
using Discrete Wavelet Transform (DWT) for feature extraction. The CHB-MIT dataset was used, resulting in 
an accuracy of 96.10%. The study had limitations of having a long training time.  

Overall, all studies evaluated had significant limitations. The biggest problem is that all models are 
extremely sensitive to noise as it is dependent on specific devices and datasets used to train the model. This is 
a serious issue as the EEG device is not identical in number of nodes and sensitivity, and the datasets as well as 
real-life EEG signals are not uniform, but all the models will not be able to predict epileptic seizures accurately. 
Moreover, the accuracy was quite low in most studies; this is unacceptable especially when predicting seizures 
as the models should predict nearly every single one and alert the patient.  

In this research paper, in order to solve the aforementioned problem, I propose a novel seizure detec-
tion framework and the methodologies will be further explained in the following chapter.  
 
Proposed Method 
 
To solve the problem of models being sensitive to noise and its bias on specific datasets, I propose a novel 
representation learning for seizure detection framework. The proposed framework is composed of the represen-
tation learning and the transfer learning phase.  
 There are three main contributions of the proposed method. First of all, the problems such as models 
being sensitive to noise and being biased on specific devices and datasets are considered. Secondly, they are 
solved using innovative methods such as representation learning and transfer learning. Third, experiments are 
conducted to prove that the proposed method is verified and accurate. 

Moving on to the first key part of the model’s architecture, the Autoencoder, used in the representation 
learning to extract the optimal features from the entangled latent features is explained. Originally, the features 
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extracted from the CNN included a combination of features extracted from the inputted Electroencephalogram 
(EEG) signals, often entangled. To increase the accuracy of seizure classification, the disentanglement and 
extraction of seizure-related features are pivotal as training on one feature will enhance the performance of the 
model. 

In order to evaluate if the feature extraction is performing well, the L1 loss function is used. This 
compares the original input data and data reconstructed using only the extracted features. If the feature extrac-
tion is performing well, the two data will be similar. The function will be explained further in Chapter 3.1. 

Another key method proposed is the Seizure Classifier. It uses transfer learning, a machine learning 
technique where knowledge gained from solving one problem is applied to a different but related problem. In 
other words, it will use a pre-trained model from the previous step. The Seizure Classifier will receive an input 
of EEG signals, which the pre-trained Convolutional Neural Network (CNN) including the Autoencoder will 
extract the seizure-related features from. The neural network then trains using these features, outputting the 
probability of the input will lead to a seizure. 

In order to evaluate the performance of the Seizure Classifier, the Cross-Entropy loss function is used. 
It measures the difference between predicted probabilities and the true labels of a given dataset. The functions 
will be explained further in Chapter 3.2. 
 This research paper comprises five chapters. In Chapter 2, background knowledge is explained. In 
Chapter 3, the proposed methods are explained. In Chapter 4, the experimental results are explained. Lastly, in 
Chapter 5, a conclusion is given to summarize the research. 
 

Related Work  
 
In this chapter, the details regarding the background knowledge related to the research topic are presented and 
discussed. 
 
Electroencephalograms 
 
Electroencephalograms (EEG) is a non-invasive neurophysiological technique that detects abnormalities in the 
brain waves or in the electrical activity of the brain using small, metal discs (electrodes) attached to the scalp. 
Neurons, which make up the brain’s electrical charge, are other. When the wave reaches the electrodes on the 
scalp, they can push or pull the electrons located in the metal of the electrodes. Since metal conducts the inter-
action of electrons easily, the difference is electrically charged through membrane transport proteins that pump 
ions across their membranes. They incessantly exchange ions with the extracellular milieu, pushing out count-
less ions simultaneously. This causes volume conduction, which is where ions released push their nearest ions, 
and those ions the next bordering ones, and as such in a wave as oppositely charged ions repel each in push or 
pull voltages between any two electrode are measured by voltmeters; making up the EEG signals as time passes 
(Tatum Wo et al., 2008). The charges are then amplified and graphed for the healthcare provider to interpret 
the readings. When epilepsy is present, seizure activity will appear as rapid spiking waves on the EEG record-
ings (Johns Hopkins University, 2023).  
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Figure 1. <Electrode locations of International 10-20 system for EEG (electroencephalography) recording>  

 
The International 10-20 system is used to place the nodes on the scalp. The 10-20 system is  based on 

the relationship between the location of an electrode and the underlying area of the cerebral cortex. As shown 
in Figure 1, each point on the scalp indicates a possible electrode position. Each site has a letter that identifies 
the lobe and a number or letter to identify the hemisphere location. The letters representing the lobes stands for 
pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), central (C), and mastoid process (A). The 
electrodes with even numbers (2,4,6,8) refer to the placement on the right side of the head, whereas odd numbers 
refer to those on the left. The letter ‘z’ represents the center vertical line of the scalp (Journal of Clinical Neu-
rophysiology, 1991). 

Out of the several types of EEG tests such as Routine EEG, Video EEG, Prolonged EEG, Sleep EEG 
or intracranial EEG, ambulatory EEG (aEEG) are commonly used to predict epileptic seizures in daily life as 
brain activity can be recorded throughout a few days, up to 72 hours. The electrodes are attached to a small 
portable EEG recorder, and patients can continue with most of their normal daily activities while the recording 
is being taken.  
 
Conversion of Time Domain into Frequency Domain by Fourier Transform 
 
In machine learning, data can be represented and analyzed in various domains depending on the nature of the 
problem and the characteristics of the data. Out of the various domains such as the time, frequency, spatial, 
image or graph domains, this chapter will discuss the conversion of time domain into the frequency domain 
using a method called the Fourier Transform, utilized in the proposed model.  

In a time domain, signals are represented as a function of time. In this domain, the signal is typically 
plotted on a time graph with time on the x-axis and signal amplitude on the y-axis. This domain is useful for 
studying phenomena that are time-dependent, such as transient events or dynamic changes in a signal.  

Similarly, in a frequency domain, signals are analyzed based on their frequency content. The frequency 
domain representation provides information about the different frequency components present in a signal and 
their respective amplitudes. The resulting frequency graph representation is often displayed on a graph with 
frequency on the x-axis and signal magnitude (or power) on the y-axis.  

EEG signals are given as a one-dimensional time domain, and this is converted to the frequency do-
main in this research for several reasons. The advantages include noise suppression as certain types of noise, 
such as high-frequency noise or specific frequency interference, can be easier to identify and remove in the 
frequency domain. By filtering out abnormal frequencies, the quality of the data and thus the quality of the 
model will be increased. Moreover, frequency domain transformation helps in the process of feature extraction. 
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The frequency domain transformation may reveal useful features of the data that can be trained by the machine 
learning model. These features play a key role in capturing important attributes and help enhance the perfor-
mance of the model. 
 

 

 
Figure 2. <Example of the Fourier Transform, with the red signal being decomposed into a sum of sinusoidal 
components, represented by the blue signals> 

 
 The conversion from the time domain into the frequency domain is done by a method called the Fourier 
Transformation, which converts a function into a form that decomposes the original data into a sum of sinusoidal 
components with different frequencies, outputting a complex-valued function of frequency (Bailey, David H et 
al., 1994) as shown in Figure 2. The Fourier Transform can be broken down into three steps. First, in the de-
composition process, the Fourier Transform breaks down the time-domain signal into its individual frequency 
components. It then analyzes the amplitudes and phases of these components in order to determine their contri-
butions to the overall signal. Secondly, in the process of outputting the frequency spectrum, the Fourier Trans-
form results in a representation of the original data in the frequency domain, called the frequency spectrum. It 
contains a set of frequency bins, with each representing the amplitude of a particular frequency component. 
Lastly, after the signals are converted into the frequency spectrum, the presence and relative strengths of diverse 
frequency components are revealed, making it significantly easier for the machine learning model to train with 
the data inputted.  

The Fourier Transform will be used to convert the time domain into the frequency domain in the pro-
posed model as a pre-processing step before the model is trained using the data. 
 

Method  
 

 

 
Figure 3. Vanilla Autoencoder 
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In this chapter, the proposed model will be explained thoroughly. In Chapter 3.1, I will elaborate on how the 
proposed representation learning method effectively disentangles the seizure-related features.  

In Chapter 3.2, the seizure classifier made by transfer learning will be presented. Figure 3 shows the 
architecture of a Vanilla Autoencoder (Hinton et al., 2006), the most basic form of an autoencoder, applied to 
this research before a new method is proposed. The Encoder takes in the input as a two-dimensional EEG signal, 
and the latent code is unentangled. zs, zd, zn, and zc represent the seizure-related, device-related, noise-related 
and constant features of the inputted EEG signal. These are called latent features as they all have potential to 
contribute in finding a meaningful pattern. Finally, the decoder uses disentangled features and reconstructs the 
EEG signal based on it. The L1 loss function then compares the original inputted EEG signal and reconstructed 
EEG signal in order to evaluate if the features have been disentangled properly.  

The proposed method uses some of this logic, but instead includes a Feature Swapping Mechanism 
and extracts one necessary feature for training. This will be explained further in Chapters 3.1 and 3.2.  
 
Representation Learning (Autoencoder)  
 
The goal of representation learning is to effectively extract the necessary features from the entangled latent 
features for the machine learning model to train on. The features extracted from the CNN include a combination 
of frequency, amplitude, noise, and seizure-related features, which are often entangled.  

In order to increase the accuracy of seizure classification, it is important to disentangle only the sei-
zure-related feature. Compared to when the model trains on multiple features including unnecessary noise, only 
training on important features will enhance the performance of the model.  

Thus, the Autoencoder extracts only the necessary, seizure-related features. To disentangle the neces-
sary features, a new feature swapping mechanism will be proposed. This will be further explained in Chapter 
3.2. 

In order to evaluate if the feature extraction is performing well, a loss function is used. After the opti-
mal features are extracted from the compressed data in the Autoencoder, the Decoder reconstructs the EEG 
signals using only the extracted, compressed data. If the feature extraction is performing well, the original data 
and reconstructed data will be similar.  

As shown in Equation 1, the L1 loss function is calculated as follows.  
Equation 1: L1 loss function 

 

 
 

Here, T denotes the total time of the dataset, and Et and   denotes a point in the original data and 
reconstructed data, respectively. For each second of the EEG signals, the difference between the original data 
and reconstructed data is calculated and summed. Theoretically, the L1 loss function can be 0, meaning feature 
extraction has been done perfectly.  
 The methods proposed will be evaluated and verified in Chapter 4. 
 
Feature Swapping Mechanism 
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Figure 4. Feature Swapping Mechanism 

 
The ultimate goal of the proposed Feature Swapping Mechanism is to disentangle necessary features from the 
seizure-related, device-related, noise-related and common features from the inputted Electroencephalogram 
(EEG) signals. This will enhance the performance of the Seizure Classifier explained in Chapter 3.3.  

In Figure 4, the general mechanism of the Feature Swapping Mechanism is presented. Two inputs, Ii 
and Ij are processed by the Encoder (Enc) which extracts the entangled features. Next, one specific feature is 
swapped. In this example, the color-related features are swapped. The swapped features are then reconstructed 
by the Decoder (Dec). The loss function, which compares the outputs, 𝐼𝐼i  and 𝐼𝐼j, with the inputs, will be ex-
plained thoroughly in Chapter 3.2.1, 3.2.2 and 3.2.3 for each specific scenario. 

EEG Feature Extractor (EFE(.)) is defined as following: EFE: E → Z, Z = { zs, zd, zn, zc }. 
The Decoder (DEC(.)) is defined as following: DEC: Z → 𝐸𝐸�  .  

The Feature Swapping Mechanism swaps specific elements of the four features. The seizure-related, 
device-related and noise-related features will each be swapped separately, and the loss of each result will be 
calculated. As the machine learning model trains, the accuracy of the extractions and swaps will be improved. 

The underlying assumption is that when specific features are swapped, the results will change accord-
ingly. For instance, when seizure-related or device-related features are swapped, the reconstructed output of 
EEG signals will be identical theoretically as these features are common for the two inputted samples of EEG 
signals. On the other hand, when noise-related features are swapped between one input of an EEG signal with 
noise and the other without noise, the outputs will also be swapped theoretically.   

Unlike the Vanilla Encoder explained in Chapter 3.1, DEC in the proposed Feature Swapping Method 
takes feature swapped latent code (Z) as an input as following: DEC: Zswap → 𝐸𝐸� swap . 
Here, Zswap represents the swapped latent code, and 𝐸𝐸� swap  represents the outputted reconstructed EEG signals 
built with the swapped features. In the proposed Feature Swapping Method, three scenarios of swapping fea-
tures (seizure-related, device-related, noise-related) will be presented. 
 The effectiveness of the proposed Feature Swapping Mechanism will be evaluated and proved in Chap-
ter 4. 
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Seizure-Related Feature Swapping  
 

 

 
Figure 5. Seizure-related feature swapping 

 
In this chapter, I will elaborate on the comprehensive procedure for disentangling seizure-related features. Fig-
ure 5 demonstrates the architecture of the proposed Feature Swapping Mechanism for seizure-related features. 
The encoder takes two EEG signals as input and extracts the latent features, and the seizure-related features are 
swapped as shown above in Figure 5. Note that the input EEG signals are of the same seizure category. This is 
due to the fact that the feature being swapped needs to be consistent. The Decoder then reconstructs the EEG 
signals based on the swapped features. 

As shown in Equation 2, the Feature Swapping Mechanism for seizure-related features is defined as 
follows. 

Equation 2: Feature swapping (seizure-related)  
 

Z1
swap_seizure = { z2

s, z1
d, z1

n, z1
c } 

Z2
swap_seizure = { z1

s, z2
d, z2

n, z2
c } 

 
Here, Z1

swap_seizure and Z2
swap_seizure represent two inputs of EEG signals of the same seizure category 

measured with different devices. z1
s, z1

d, z1
n, z1

c represents the seizure-related, device-related, noise-related and 
common features for Z1

swap_seizure respectively. z2
s, z2

d, z2
n, z2

c represents the seizure-related, device-related, 
noise-related and common features for Z2

swap_seizure respectively.  
z1

s, originally an element of Z1
swap_seizure, is swapped with z2

s, originally an element of Z2
swap_seizure. When 

the two seizure-related features are swapped, the DEC will reconstruct the changed features into EEG signals. 
As the assumption is that the seizure-related features for two EEG signals of the same seizure category are 
identical, the output of each is optimal when it is identical with its inputs. Thus, the loss function should be 
calculated between Z1 and Z1

swap_seizure after it has been processed by the DEC, as well as Z2 with Z2
swap_seizure 

after it has been processed by the DEC. The loss functions will inform us if the seizure-related features are 
being extracted accurately.  Equation 3 shows how the proposed Lseizure loss is calculated.  

Equation 3: Lseizure loss function 
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Here, T denotes the number of samples in the inputted EEG signal, and Et and   denotes the inputted 
EEG signal and its reconstructed EEG signals based on the swapped features, respectively. Similarly to the 
Equation 1, the proposed Lseizure function measures the element-wise difference between the inputted and recon-
structed EEG signals.  
 
Device-Related Feature Swapping  
 

 

 
Figure 6. Device-related feature swapping 

 
Similarly to Chapter 3.2.1, this chapter elaborates on the  comprehensive procedure for disentangling device-
related features. Figure 6 demonstrates the architecture of the proposed Feature Swapping Mechanism for de-
vice-related features. The mechanism is similar to the Feature Swapping Mechanism for seizure-related fea-
tures. However, note that the input EEG signals need to be samples measured from the same device instead of 
seizure categories. This is due to the fact that the feature being swapped needs to be consistent.  

As shown in Equation 4, the Feature Swapping Mechanism for device-related features is defined as 
follows. 

Equation 4: Feature Swapping Mechanism (device-related) 
 

Z1
swap_device = { z1

s, z2
d, z1

n, z1
c } 

Z2
swap_device = { z2

s, z1
d, z2

n, z2
c } 

 
Here, Z1

swap_seizure and Z2
swap_seizure represent two inputs of EEG signals of the same seizure category 

measured with different devices. z1
s, z1

d, z1
n, z1

c represents the seizure-related, device-related, noise-related and 
common features for Z1

swap_seizure respectively. z2
s, z2

d, z2
n, z2

c represents the seizure-related, device-related, 
noise-related and common features for Z2

swap_seizure respectively.  
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z1
d, originally an element of Z1

swap_seizure, is swapped with z2
d, originally an element of Z2

swap_seizure. When 
the two device-related features are swapped, the DEC will reconstruct the changed features into EEG signals. 
As the assumption is that the device-related features for two EEG signals measured with the same device are 
identical, the output of each is optimal when it is identical with its inputs. Thus, the loss function should be 
calculated between Z1 and Z1

swap_seizure after it has been processed by the DEC, as well as Z2 with Z2
swap_seizure 

after it has been processed by the DEC. The loss functions will inform us if the seizure-related features are 
being extracted accurately. Equation 5 shows how the proposed Lseizure loss is calculated.  

Equation 5: Ldevice loss function 
 

 
 

Here, T denotes the number of samples in the inputted EEG signal, and Et and   denotes the inputted 
EEG signal and its reconstructed EEG signals based on the swapped features, respectively. Similarly to the 
Equation 1, the proposed Ldevice function measures the element-wise difference between the inputted and recon-
structed EEG signals.  
 
Noise-Related Feature Swapping  
In this chapter, the comprehensive procedure for disentangling noise-related features is elaborated. Figure 7 
demonstrates the architecture of the proposed Feature Swapping Mechanism for noise-related features. Note 
that there are differences compared to Chapter 3.2.1 and 3.2.2, which were quite alike. The Feature Swapping 
Mechanism for noise-related features takes two inputs: a sample of EEG signal and the same EEG signal sample 
but with its noise suppressed. The wavelet-inverse wavelet transformation will be used to suppress the noise of 
the EEG signals. 
 

 

 
Figure 7. Device-related feature swapping 
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 For example, E1 is the original EEG signal and E2 is the EEG signal generated from E1 with its noise 
suppressed through the wavelet - inverse wavelet transformation in Figure 7.  
 The outputs should theoretically be swapped as well. 𝐸𝐸�1 should be identical to E2, and 𝐸𝐸�2 should be 
identical to E1. This is because the features swapped are different. The noise-related features were swapped, 
and one had noise-related features while the other had suppressed noise-related features. Accordingly, the loss 
function should be calculated between  𝐸𝐸�1 with E2, and 𝐸𝐸�2 with E1. 

As shown in Equation 6, the Feature Swapping Mechanism for noise-related features is defined as 
follows. 

Equation 6: Feature Swapping Mechanism (noise-related) 
 

Z1
swap_noise = { z1

s, z1
d, z2

n, z1
c } 

Z2
swap_noise = { z2

s, z2
d, z1

n, z2
c } 

 
Here, Z1

swap_seizure and Z2
swap_seizure represent two inputs of EEG signals, with one sample of EEG signal 

and the other the same signal but with the noise suppressed. z1
s, z1

d, z1
n, z1

c represents the seizure-related, device-
related, noise-related and common features for Z1

swap_seizure respectively. z2
s, z2

d, z2
n, z2

c represents the seizure-
related, device-related, noise-related and common features for Z2

swap_seizure respectively.  
z1

n, originally an element of Z1
swap_seizure, is swapped with z2

n, originally an element of Z2
swap_seizure. When 

the two device-related features are swapped, the DEC will reconstruct the changed features into EEG signals. 
As the assumption is that the noise-related features are different for the two EEG signals, with one unsuppressed 
and the other suppressed, the outputs should be identical with the other signal instead of its original signal after 
being processed by the DEC. Thus, the loss function should be calculated between Z1 and Z2

swap_seizure after it 
has been processed by the DEC, as well as Z2 with Z1

swap_seizure. The loss functions will inform us if the seizure-
related features are being extracted accurately. Equation 7 shows how the proposed Lnoise loss is calculated.  

Equation 7: Lnoise loss function 
 

 
 

Here, T denotes the number of samples in the inputted EEG signal, and Et and   denotes the inputted 
EEG signal and its reconstructed EEG signals based on the swapped features, respectively. 

In conclusion, the total loss function is a weighted linear combination of the three previously men-
tioned loss functions, as shown in Equation 8.  

Equation 8: Ltotal loss function  
 

L = Lseizure + α * Ldevice + β * Lnoise 

 
Here, α and β are variables that assign weights to each loss function. Through extensive experiments, 

I have discovered that setting α to 0.8 and β to 0.7 produces the most optimal results.  
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Transfer Learning (Seizure Classifier)  
 

 

 
Figure 8. <Transfer Learning (Seizure Classifier)> 

 
Another method proposed in this research is transfer learning, as shown in Figure 8. Transfer learning is a 
machine learning technique where knowledge gained from solving one problem is applied to a different but 
related problem. The ultimate goal is to build an accurate seizure classification network.  

The Seizure Classifier will receive a one dimensional input of EEG signals, which the pre-trained 
Convolutional Neural Network (CNN) from Chapter 3.1 will extract the seizure related features from. The 
neural network trains using these features, outputting the probability of the input will lead to a seizure.  

The features are disentangled when processed through the encoder (ENC) as following:  
ENC: E → Z. The features will be separated into Zs, Zd, Zn, Zc, seizure-related, device-related, noise-related and 
common features, respectively. 

The extracted features are finally processed into a probability as follows: SCL: zs → Pseizure.  
After the features are extracted, Zs will be extracted. Zs, the seizure-related features, are then taken as an input 
and processed by the Seizure Classifier (SCL). SCL is a neural network that takes the seizure-related features 
as an input and outputs the probability, Pseizure, whether a seizure is about to take place or not.  
 In order to evaluate the performance of the SCL, the Cross-Entropy loss function is used. It measures 
the difference between predicted probabilities and the true labels of a given dataset. 

Before the Cross-Entropy loss is computed, an activation function called the Softmax function is ap-
plied to the scores. As shown in Equation 9, it normalizes the raw scores to probabilities between 0 and 1. 

Equation 9: Softmax function 
 

 
 
 Here, xi denotes the ith raw score. The equation applies exponential functions, an increasing function 
only including positive numbers in order to change the scores into positive numbers without changing the strict 
inequality of them since probabilities can not be negative. Then, the scores are normalized into probabilities 
that sum to 1 by dividing each score by the sum of all the scores.  
 After the raw scores are converted into probabilities, the Cross-Entropy loss (LCE) is computed as 
shown in Equation 10 below. 

Equation 10: Cross-Entropy (LCE) Loss 
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 Here, yi and   denotes the true output and predicted output, respectively. The log function is utilized 
because log values increase rapidly as the predicted probability approaches 0, the wrong prediction. This helps 
increase accuracy as the loss will be much greater as the prediction reaches a completely wrong value.  
 
Implementation Details  
 
I utilized the ResNet-50 (He et al. 2016) architecture as the encoder, and I modified the downsampling layers 
with upsampling layers to develop the decoder. For training, I used Adam optimizer with an initial learning rate 
set to 0.0001 over the course of 120 epochs. Additionally, I implemented learning rate reductions by a factor of 
0.1 at the 60th and 100th epochs. In transfer learning, I constructed the Seizure Classifier using a two-layer 
neural network and proceeded to train it for 40 epochs, maintaining a constant learning rate of 0.0001 without 
any decay. It was observed that this transfer learning approach rapidly converges towards the optimal point, 
attributable to the enhanced representations during the process of the proposed feature swapping mechanism 
based representation learning.  
 
 

Experimental Results 
 
Dataset 
 
In this chapter, I will provide a comprehensive description of the two datasets used in the research, the NICU 
dataset (Stevenson et al. 2019) and the Epileptic Seizure Recognition dataset (Wu et al. 2017).  

The first dataset used is the NICU dataset, a dataset of neonatal electroencephalography (EEG) record-
ings with seizure annotations. It consists of 46,640 samples of EEG signals in total collected from 79 individu-
als. Out of the samples, 17,940 were collected during seizures (positive), and 28,700 were collected during 
normal states (negative).  

The second dataset used is the Epileptic Seizure Recognition dataset from the UC Irvine Machine 
Learning Repository. It contains 11,500 EEG signal samples collected from 500 individuals. 2,300 samples 
were collected during seizures (positive), and 9,200 were collected from normal states (negative).  

Both datasets will be used for within-dataset evaluation and cross-dataset evaluation.The two datasets 
will be split into a total of 5 folds, with a 8:2 ratio of training data and test data respectively for the 5-fold cross 
validation.  
 
Protocol 
 
In this research, various evaluations are conducted to verify the effectiveness of the proposed approach. Com-
parison with state-of-the-art (SOTA) methods, including within dataset and cross dataset tests, will allow the 
comparison between the efficiency of the proposed method compared to the existing ones. The cross dataset 
test especially will prove how the proposed method solves the bias problem on datasets and Electroencephalo-
gram (EEG) devices. Both comparisons with SOTA evaluation will be conducted through the 5-fold validation. 
These evaluations will be explained further in Chapter 4.3. 
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 The evaluations will be organized into evaluation metrics. Each column represents Accuracy, Recall, 
Precision and the F1 score. Before moving on, the confusion matrix needs to be described. The confusion matrix 
consists of four types: True Positive, the correctly predicted positive results, True Negative, the correctly pre-
dicted negative results, False Positive, when the correct prediction is negative but was incorrectly predicted to 
positive, and False Negative, when the correct prediction is positive but was incorrectly predicted to positive. 
In the medical field, the False Negative value should be especially lower as this means no predictions were not 
made.  

First of all, as shown in Equation 11, Accuracy is the number of correctly predicted data, True Positive 
and True Negative, divided by the total number of data. 

Equation 11: Accuracy 
 

 
 
 Secondly, as shown in Equation 12, Recall is the number of data that the model recognizes as positive, 
True Positive, when the data is actually positive, True Positive and False Negative over the number of total 
data.  

Equation 12: Recall 
 

 
 
 Thirdly, as shown in Equation 13, Precision is the number of data that the model predicts to be positive, 
True Positive, that is actually positive, True Positive and False Positive.  

Equation 13: Precision 

 
 

Lastly, as shown in Equation 14, the F1 Score is an evaluation metric that measures a model's accuracy 
in general. It is the harmonic average of precision and recall. The harmonic mean is calculated instead of the 
normal mean because the closer the precision and recall are to zero, the lower the F1 score should be. 

Equation 14: F1 Score 
 

 
 
 After the tests are conducted and evaluated, the feature maps will be visualized through the t-sne vis-
ualization, a statistical method for visualizing high-dimensional data by compressing it to dots on a two-dimen-
sional graph. This method will prove if the latent features are extracted properly. The visualization of the feature 
maps will be elaborated in Chapter 4.4. 

For the comparison methods, 5-fold validations were chosen. The ultimate goal when comparing the 
proposed framework with state-of-the-art (SOTA) methods is to prove the enhanced accuracy of the model and 
to show how the proposed framework, unlike the existing ones, will not be dependent on specific datasets and 
devices. As shown in Figure 9, 5-fold validation is when all data is randomly split into 5 folds, and the model 
is trained on the 4 folds, while one fold is left to test the model. This procedure is repeated 5 times.  
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Comparison with SOTA  
 
Within Dataset Evaluation  
The first evaluation conducted is the 5-fold validation within the dataset. The goal of this evaluation is to prove 
the enhanced accuracy of the proposed model. The two datasets, NICU dataset and Epileptic Seizure Recogni-
tion dataset are used. As explained in Chapter 4.2, 5-fold validation is when all data is randomly split into 5 
folds, and the model is trained on the 4 folds, while one fold is left to test the model. This procedure is repeated 
5 times.  
 
Table 2. Performance comparison on NICU dataset (within dataset) 
 

 Accuracy Recall Precision F1-score 

VGG19 (Simonyan 
et al. 2014) 

0.8417 (±0.0004) 0.8611 
(±0.0010) 

0.7785 
(±0.0005) 

0.7689 
(±0.0012) 

MobileNetV2 
(Sandler et al. 

2018) 

0.8692 
(±0.0005) 

0.8918 
(±0.0016) 

0.7894 
(±0.0009) 

0.7907 
(±0.0011) 

DenseNet121 
(Huang et al. 

(2017) 

0.9144 
(±0.0009) 

0.9589 
(±0.0011) 

0.8312 
(±0.0008) 

0.8928 
(±0.0007) 

HRNet32 
(Sun et al. 2019) 

0.9006 
(±0.0013) 

0.9481 
(±0.0007) 

0.8208 
(±0.0004) 

0.8794 
(±0.0010) 

Proposed model 0.9053 
(±0.0011) 

0.9508 
(±0.0008) 

0.8284 
(±0.0006) 

0.8854 
(±0.0009) 

 
Table 3. Performance comparison on Epileptic Seizure Recognition dataset (within dataset) 
 

 Accuracy Recall Precision F1-score 

VGG19 (Simonyan 
et al. 2014) 

0.8804 
(±0.0006) 

0.8903 
(±0.0010) 

0.8774 
(±0.0008) 

0.8915 
(±0.0007) 

MobileNetV2 
(Sandler et al. 

2018) 

0.8851 
(±0.0004) 

0.8887 
(±0.0008) 

0.8680 
(±0.0009) 

0.8779 
(±0.0006) 

DenseNet121 
(Huang et al. 

(2017) 

0.9465 
(±0.0007) 

0.9662 
(±0.0008) 

0.9307 
(±0.0004) 

0.9551 
(±0.0006) 
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HRNet32 
(Sun et al. 2019) 

0.9352 
(±0.0011) 

0.9477 
(±0.0009) 

0.9187 
(±0.0006) 

0.9405 
(±0.0010) 

Proposed model 0.9488 
(±0.0006) 

0.9504 
(±0.0007) 

0.9215 
(±0.0010) 

0.9513 
(±0.0009) 

 
Table 2 and Table 3 shows the performance of five models including the proposed model on the within 

dataset evaluation on the NICU dataset and the Epileptic Seizure Recognition dataset, respectively.  
The proposed method outperforms the previous models by an accuracy of 0.0238 (2.38%) and 0.0370 

(3.70%) when using the NICU dataset and  Epileptic Seizure Recognition dataset respectively. In total, the 
proposed method has a 0.0304 (3.04%) increased accuracy. Although the difference is not great, it still outper-
forms the four models on average.  

There are several noticeable points from the results. The first observable point is that the performance 
of the VGG19 (Simonyan et al. 2014) and MobileNetV2 (Sandler et al. 2018) are remarkably low. This is due 
to the fact that the two models have comparably shallow networks.  

The second noticeable point is that the DenseNet121 (Huang et al. (2017) and HRNet32 (Sun et al. 
2019)  have comparable performance as the two models consist of deeper layers. However, as these two models 
train on a supervised approach, it tends to be biased on the dataset used during training. Consequently, their 
performance experiences a significant performance drop during cross dataset evaluation. A more detailed ex-
planation will be given in Chapter 4.3.2.  

Another noticeable point is that the proposed method shows comparably high performance in the 
within dataset evaluation, as well as the cross dataset evaluation as it is not biased on the certain dataset. The 
proposed method effectively disentangles seizure-related features without exhibiting bias 
towards specific datasets. I attribute this generalization ability of the proposed method to the feature swapping 
mechanism based representation learning. This will also be explained thoroughly in Chapter 4.3.2.  
 

  

(a) (b) 

 
Figure 9. ROC curve 
(a): ROC curve of the within-dataset evaluation using the NICU dataset 
(b): ROC curve of the within-dataset evaluation using the Epileptic Seizure Recognition dataset 
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An ROC curve (receiver operating characteristic curve) is a graph that shows the performance of a 
classification model at all classification thresholds. The curve plots two parameters: True Positive Rate as the 
y-axis and False Positive Rate as the x-axis. In other words, it depicts the trade-off between sensitivity and 
specificity. The red line represents a random model, and the blue line the proposed method. 

When the AUC (Area Under the ROC Curve) is greater than 0.5 and closer to 1, it has a higher chance 
that the model can classify positive and negative values. The graphs in Figure 9 (a) and (b) are the ROC curves 
for the within-dataset evaluation using the NICU dataset and Epileptic Seizure Recognition dataset respectively. 
They both have AUC comparably close to 1, meaning that the two models have satisfactory performance in 
terms of sensitivity and specificity.  
 
Cross Dataset Evaluation 
The second evaluation conducted is the cross dataset 5-fold validation test. The goal of this evaluation is to 
prove that the proposed model is unbiased to any datasets or Electroencephalogram (EEG) devices. Two da-
tasets, NICU and Epileptic Seizure Recognition datasets are used. Similarly to the previous evaluation, the two 
datasets are both randomly split into 5 folds. Unlike the within dataset evaluation which is trained and tested 
using the same dataset, the cross dataset evaluation trains with the 4 folds of one of the two datasets, then is 
tested using one fold of the other dataset. This procedure is repeated 5 times.  
 
Table 4. Performance comparison on model trained on the NICU dataset and tested on the Epileptic Seizure 
Recognition Dataset (cross-dataset) 
 

 Accuracy Recall Precision F1-score 

VGG19 (Simonyan 
et al. 2014) 

0.5846 
(±0.0006) 

0.5894 
(±0.0004) 

0.5785 
(±0.0006) 

0.5881 
(±0.0005) 

MobileNetV2 
(Sandler et al. 2018) 

0.5798 
(±0.0007) 

0.5901 
(±0.0006) 

0.5562 
(±0.0005) 

0.5711 
(±0.0008) 

DenseNet121 
(Huang et al. (2017) 

0.6739 
(±0.0010) 

0.6884 
(±0.0011) 

0.6585 
(±0.0011) 

0.6701 
(±0.0009) 

HRNet32 
(Sun et al. 2019) 

0.6207 
(±0.0012) 

0.6511 
(±0.0009) 

0.6067 
(±0.0012) 

0.6294 
(±0.0010) 

Proposed model 0.8171 
(±0.0008) 

0.8588 
(±0.0009) 

0.7892 
(±0.0007) 

0.8357 
(±0.0005) 
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(a) (b) 

 
Figure 10. Performance evaluation graphs comparing state-of-the-art methods and  models trained on the NICU 
dataset 
(a): Bar graph on accuracy of within-dataset test and cross-dataset test 
(b): Line graph on evaluation of within-dataset test and cross-dataset test 

 
Table 4 demonstrates the evaluation results for the cross dataset 5-fold validation test. The NICU da-

taset is used to train the model, and the Epileptic Seizure Recognition dataset is used for testing . The accuracy, 
recall, precision and f1-score of the proposed method is also higher than most of the values of the state-of-the-
art methods. 

When the accuracy of the within-dataset tests on the previous methods and proposed method are com-
pared, they are fairly similar. As explained in DenseNet121 (Huang et al. (2017) and HRNet32 (Sun et al. 2019) 
show comparable accuracy due to the fact that they both consist of deeper layers. The proposed method, which 
also has a deep layer, shows high accuracy of 0.9053 (±0.0006). 
 However, when the accuracy of the cross-dataset tests on the models are compared, the proposed 
method has impressively high accuracy. As shown in Figure 10 (b), in the last column, which compares the 
accuracy of the cross-dataset evaluation results between the five models, the proposed method shows signifi-
cantly high accuracy. This can be observed in Figure 10 (a) as well.  

The two models that showed high accuracy during the within-dataset evaluation, DenseNet121 and 
HRNet 32, train on a supervised approach, tending to be biased on the dataset used during training. Conse-
quently, their performance experiences a significant performance drop during cross dataset evaluation. On av-
erage, the proposed method performs 0.2024 (20.24%) better than the previous models.  

In other words, the proposed model is not biased on a certain dataset. As the feature swapping mech-
anism based representation learning disentangles and extracts the necessary features effectively, the generali-
zation ability is higher than previous models that do not disentangle features. The disentanglement of features 
will be evaluated further in Chapter 4.4. When features are not extracted before used for training, the model 
trains with unnecessary information as well. This causes the previous models to be biased on certain datasets. 
On the other hand, the proposed method only uses the extracted seizure-related features for training. Thus, the 
model performs effectively on other datasets. 
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Table 5. Performance comparison on model trained on the Epileptic Seizure Recognition Dataset dataset and 
tested on the NICU dataset (cross-dataset) 
 

 Accuracy Recall Precision F1-score 

VGG19 
(Simonyan et al. 

2014) 

0.6033 
(±0.0007) 

0.6242 
(±0.0008) 

0.5798 
(±0.0011) 

0.5873 
(±0.0012) 

MobileNetV2 
(Sandler et al. 

2018) 

0.5860 
(±0.0004) 

0.5911 
(±0.0006) 

0.5718 
(±0.0007) 

0.5850 
(±0.0010) 

DenseNet121 
(Huang et al. 

(2017) 

0.6256 
(±0.0006) 

0.6447 
(±0.0008) 

0.5918 
(±0.0008) 

0.5994 
(±0.0005) 

HRNet32 
(Sun et al. 

2019) 

0.5838 
(±0.0009) 

0.6218 
(±0.0005) 

0.5597 
(±0.0014) 

0.5784 
(±0.0012) 

Proposed model 0.7832 
(±0.0011) 

0.8041 
(±0.0007) 

0.7706 
(±0.0009) 

0.7881 
(±0.0010) 

 

 

 

(a) (b) 

 
Figure 11. Performance evaluation graphs comparing state-of-the-art methods and  models trained on the Epi-
leptic Seizure Recognition Dataset  
(a): Bar graph on accuracy of within-dataset test and cross-dataset test 
(b): Line graph on evaluation of within-dataset test and cross-dataset test 
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 Similarly to Table 4, Table 5 demonstrates the evaluation results for the cross dataset 5-fold validation 
test on the Epileptic Seizure Recognition Dataset. The accuracy, recall, precision and f1-score of the proposed 
method is also higher than most of the values of the state-of-the-art methods. 

The results are analogous to the tests based on models trained on the NICU dataset. When the accuracy 
of the within-dataset tests on the previous methods and proposed methods are compared, the results of the 
DenseNet121, HRNet32 and the proposed method all show high performance since they consist of deep layers. 
The proposed model has an accuracy of 0.9488 (±0.0006).  

However, when the accuracy of the cross-dataset tests on the models are compared, the proposed 
method has significantly high accuracy. This can be observed in Figure 11 (a) and (b). As the previous models 
train on a supervised approach, they all tend to be biased on the dataset used during training. Consequently, 
their performance experiences a significant performance drop during cross dataset evaluation. On average, the 
proposed method performs 0.1835 (18.35%) better than the previous models.  

Unlike the previous methods, the proposed model is not biased on a certain dataset as it has high 
generalization ability due to the feature swapping mechanism based representation learning that extracts the 
necessary features effectively as explained previously. Thus, the proposed model performs effectively in all 
datasets.  
 One difference is that the drop between the accuracy of the within-dataset evaluation and cross-dataset 
evaluation of the proposed method is slightly greater when trained on the Epileptic Seizure Recognition Dataset 
compared to when the model is trained on the NICU dataset. The reason for this is that the Epileptic Seizure 
Recognition Dataset has a smaller number of sample data than the NICU dataset. As a wide range of dataset 
distribution is not provided for the model to train on, the performance will decrease slightly as an effect.  
 In brief, the within-dataset and cross-dataset evaluations were conducted using the NICU dataset and 
Epileptic Seizure Recognition Dataset, and the proposed method performed better than the state-of-the-art meth-
ods, especially in the cross-dataset evaluation. The differences in accuracy is as follows: the proposed model 
outperformed the previous methods by 0.0304 (3.04%) during the within-dataset evaluation, and  0.1935 
(19.35%) in the cross-dataset evaluation. The considerable difference in accuracy in the cross-dataset evaluation 
shows that the proposed model is unbiased on the datasets used for training unlike the previous methods. Thus, 
the problem mentioned in Chapter 1.2 that the models are biased on devices and datasets has been solved and 
proved with the proposed model. 
 
Feature Maps Visualization  
 

  

(a) (b) 
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Figure 12. t-SNE (Van der Maaten et al. 2008) visualization of feature maps 
(a): t-SNE visualization of the original data (NICU dataset) 
(b): t-SNE visualization after the features have been disentangled by the Autoencoder 

 
The purpose of the visualization of the feature maps is to evaluate if the latent features are extracted properly 
through the proposed Encoder (ENC) network. The t-sne (Van der Maaten et al. 2008) visualization is used, 
which projects high-dimensional feature vectors to low-dimensional plots so that the mutual distance relation-
ships between the points in the initial high-dimensional space are captured in the low-dimensional space. In 
other words, if two points were close in the initial high-dimensional space, they stay close in the resulting graph, 
but should stay far apart if  the points were far from each other in the original space. 
 In the visualization, the data of one person from the dataset will be plotted as a dot using the same 
color. This will allow the evaluation if the features from the same person are grouped well. As shown in Figure 
12 (a), when the original data from the NICU dataset is visualized, the dots with different colors are all mixed 
with each other. However, as shown in Figure 12 (b), where the feature map is visualized after the features have 
been disentangled, the dots with the same colors are clustered in groups. This clearly shows that the data points 
of the same category have been grouped together correctly in the Autoencoder. Thus, the t-SNE visualization 
shows that the disentanglement of features are working properly, proving that the method extracting necessary 
features will also be effective.  
 

Conclusion  
 
In this paper, I proposed a semi-supervised based domain generalization method to develop an accurate seizure 
prediction system. The proposed method consists of two phases: the representation learning and the transfer 
learning phase. The Feature Swapping Mechanism was implemented in the representation learning phase to 
disentangle and extract seizure-related features, enhancing the accuracy of the model. In the transfer learning 
phase, pre-trained networks and neural networks were utilized, outputting the probability there will be a seizure 
in the inputted electroencephalogram (EEG) signal.  

Overall, the experimental results demonstrated that the proposed method outperformed the state-of-
the-art methods in the within dataset 5-fold evaluation by an average of 0.0304 (3.04%). It outperformed the 
state-of-the-art methods in the cross dataset 5-fold evaluation by 0.1935 (19.35%) as well. This proves how the 
several problems detected from previous methods such as the sensitivity of the model to noise and the bias on 
specific devices and datasets were solved.  

The results highlight the feasibility of applying the proposed method to real-life situations when pre-
dicting epileptic seizures. For the future, I intend to create a portable, lightweight EEG device that can be worn 
in daily life, and alerts the patients and healthcare before a seizure occurs through mobile devices.  
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