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ABSTRACT 
 
Current treatments for bacterial infections are under threat by the growth of antibiotic resistance in many dif-
ferent pathogens. Of these pathogens, Salmonella is a particularly widespread microbe, infecting over a million 
people annually as the leading source of food-borne diseases. One potential solution for antibiotic-resistant 
Salmonella is virulence inhibition of the bacteria’s T3SS injection system, which has been shown to destroy 
Salmonella’s proliferative abilities. Here, we identify fourteen compounds, primarily novel ligands, that exhibit 
high in-vitro potential as Salmonella inhibitors by attacking the ATPase InvC protein vital for T3SS injection–
an enzyme that has not been previously evaluated for small-molecule inhibition. We also present a statistical 
analysis of AutoGrow4, a virtual structure-based molecular design tool that evolves ligands to better suit a 
target protein using Autodock Vina binding affinity calculations. Together, these create an entirely open-source 
workflow towards computational identification and evaluation of novel chemical treatments. 
 

Introduction 
 
Antibiotic resistance has become one of the leading threats to human health worldwide in the face of widespread 
antibiotic abuse and lack of new pharmaceutical treatments1, with the Global Antimicrobial Resistance and Use 
Surveillance System (GLASS) report finding that over 50% of bacteria in bloodstream infections are resistant 
to antibiotics2. Salmonella, a foodborne pathogen associated with 1.2 million illnesses annually3, is particularly 
dangerous because it has developed resistance to several common antibiotics, including ampicillin, chloram-
phenicol, streptomycin, antimicrobial sulfonamides, and tetracycline3. The CDC estimates that drug-resistant 
salmonellosis (Salmonella enterica & Salmonella Typhimurium) accounts for approximately 212,500 infections 
yearly, and drug-resistant typhoid fever (Salmonella Typhi and Salmonella Paratyphi A., two serovars of Sal-
monella enterica) leads to an additional 77,000 infections4. Conservative estimates reveal that drug-resistant 
Salmonella causes nearly 300,000 infections annually. The severe threat that Salmonella poses urgently calls 
for the discovery of new drugs or treatment methods effective against drug-resistant Salmonella.  

One solution to this developing resistance problem is utilizing virulence inhibitors, which convert 
pathogenic organisms to benign ones by disarming them of their virulence. Many virulence inhibitors target 
external molecules or effectors, which can evade the development of antibacterial resistance caused by dimin-
ished permeability (where antibiotics become impermeable to the bacterial membrane as bacteria close protein 
channels)5.  In addition, it has been theorized that even when bacteria develop resistance to anti-virulents, it 
often results in nonfunctional virulent systems5. Another benefit to virulence inhibitors is the relative lack of 
impact on the patient’s microbiome: while traditional antibiotics often target both pathogenic and helpful bac-
teria, disarming the secretion system virtually exclusive to harmful gram-negative bacteria keeps intestinal flora 
intact and likely reduces gastrointestinal side effects6.  

Salmonella, like many other gram-negative bacteria (Bordetella spp., Burkholderia spp., Chlamydia 
spp., Escherichia coli, Pseudomonas aeruginosa,  Shigella spp., Vibrio cholerae, and Yersinia spp), utilizes the 
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Type 3 Secretion System (T3SS) to secrete its bacterial effectors into the eukaryotic cell7. The T3SS is a protein 
complex comprising over 20 different conserved proteins, creating a channel from the bacterial cell to the host 
cell8, allowing it to “inject” bacteria effectors using a needle-like apparatus known as an injectosome9. The 
T3SS contains 3 types of proteins: structural proteins, which form the body of the apparatus; translocators, 
which translocate the virulence factors into the host cells; and the effectors, which promote bacterial invasion 
and survival in the host cell10.  Its two continuous rings pass through the bacterial inner membrane, outer mem-
brane, and peptidoglycan layer, anchoring the needle to the cell membrane. The structural apparatus contains 
the cytoplasmic complex, the export apparatus, the basal body, and the 2.5 nm needle10(Figure 1). To secrete 
the effectors, chaperone proteins form complexes with substrates, which are loaded onto free cytoplasmic com-
plexes. SctK, SctQ, and SctL, specifically, are known as the “sorting platform” because of their involvement in 
recruiting chaperone-substrate complexes11. The sorting platform then “unfolds” the effectors to “de-chaper-
one” them, and the ATPase in the cytoplasmic complex works with the export apparatus to guide and power 
the secretion of effector proteins through the needle8. Effectors are passed through the translocon, which forms 
pores on the host cell membrane through the needle tip10. This signals increased bacterial invasion and promotes 
bacterial survival, thus killing the host cell8.  
 

 
 
Figure 1. T3SS general structure with color-coded and labeled sections 

 
In Salmonella, the Salmonella Pathogenicity (SPI-1) virulence factor codes for the T3SS that enables 

bacterial invasion into host cells, where SPI-1 delivered effectors restructure the cytoskeleton of the host cell 
to force phagocytosis of the Salmonella pathogen12, 13. This process is critically dependent on the hexameric 
ATPase in the cytoplasmic complex, which is known as InvC in Salmonella. InvC is composed primarily of 
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three folded domains: the N-terminal involved in the oligomerization of InvC14;  the conserved ATPase catalytic 
domain; and the C-terminal, which is potentially involved in recognizing chaperone-effector complexes15. InvC 
plays a role in recognizing and binding the chaperone-effector complex, catalyzing ATP-fueled effector re-
moval, and unfolding effectors in preparation for secretion15.  It is vital for Salmonella proliferation, for strains 
with loss-of-function mutant InvC were unable to successfully invade intestinal epithelial cells after the cata-
lytic phosphate-binding loop motif (P-loop) was modified14.  

The necessity of InvC for virulence and its conserved structure across several pathogen species makes 
it an attractive target for T3SS inhibition. InvC is also highly related to several other T3SS ATPases, like Shi-
gella Spa47, Yersinia YscN, E. coli EscN, and Pseudomonas HrcN, sharing 38-75% of its sequence with these 
orthologs16 –giving it potential as a target for broad-spectrum activity. The dysfunctionality of ATPase-knock-
out mutants is not restricted to Salmonella; in E. coli, deletion of the EscN gene (an ortholog to InvC) renders 
the pathogen unable to develop or secrete virulence factors17. Similarly, in Y. enterocolitica, deletion of the 
YscN gene (another ortholog to InvC) abolishes the secretion of bacterial effectors18. In Salmonella, when InvC 
is heavily destabilized, mutant strains are defective for translocation of effectors, bacterial egress, cytosolic 
colonization, and vacuolar replication19. In addition, inhibition of T3SS ATPase avoids the risk of cross-reaction 
between T3SS ATPase inhibitors and human ATPase enzymes because bacterial ATPase and human ATPase 
share less than 25% of their sequences and their active sites are structurally different5. Though there are many 
existing inhibitors of Salmonella T3SS, none have been shown to target the InvC protein vital for combating 
antibacterial resistance20, 21, 22, 23, 24.   

In this work, we identify potential inhibitors of the Salmonella ATPase InvC protein using in-silico 
molecular docking and structure-based virtual screening–a promising tool for drug discovery enabled by newly 
available protein crystallography structures25 and ligand libraries26. Computationally predicting the binding con-
formations of ligands to a receptor allows for the rapid screening of thousands of potential ligands to find the 
most viable lead compounds, an efficient precursor to traditional synthesis and biological assays27. The com-
pounds with the most negative binding energies (in kcal/mol) represent the most stable conformations; the lower 
the binding energy, the better a ligand can bind to the active site and is therefore predicted to be a more potent 
inhibitor. Here, we use these binding scores to identify lead compounds with the most potential. Additionally, 
catalogs of commercially available drug structures enable the targeted screening of compounds with known 
properties and metabolic activity. Especially with the availability of the Zinc database28, we were able to pre-
liminarily filter out small molecules with nonoptimal drug-likeness (an estimation of a compound’s in-vivo 
potential based on its physiochemical properties) by selecting ligands with favorable molecular weight and 
lipophilicity–factors that have been demonstrated to impact molecular absorption, metabolism, and other factors 
(more details in methods/results)29.  

In this study, we screened thousands of potential ligands from the Zinc database and utilized Au-
toGrow4, an open-source structure-based drug design tool, to evolve potent inhibitors into novel drug-like com-
pounds with optimized properties30. We present over a dozen lead compounds derived from ten generations of 
ligand evolution with the highest binding affinities, as well as an evaluation of an entirely open-source route to 
novel inhibitor identification through the examination of the software’s efficacy across generations.  
 

Results 
 
We computationally screened selected molecules from the Zinc database against the active site of the InvC 
protein through AutoGrow4 for a total of 10 generations against the 6sdx model of InvC from the Protein Data 
Bank31. Out of the Salmonella InvC models in the Protein Data Bank, we chose 6sdx because it contains ATP-
gamma-s, the ligand used for investigation in the reference literature32. For the binding site, we targeted the P-
loop (amino acid residues 162-166) located in the ATPase catalytic core32, as well as surrounding residues 
shown to interact with ligands in the binding site. When ATP-gamma S is bound to the enzyme, the phosphate 
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groups form hydrogen bonds with G164 and T166, and a salt bridge with K165; the adenine group is stabilized 
by a pi-stacking bond with Y338 and forms a hydrogen bond with V411. As shown, this loop is highly relevant 
for ATP recognition and synthesis. 

Since AutoGrow tends to create population homogeneity, convergence, and undesirable moieties after 
longer runs30, we executed AutoGrow for 10 generations until improvement began to stall. We noticed com-
pound fitness improving quickly in the first few generations and progress slowing in later generations, so com-
pound suitability was unlikely to improve upon further experimentation. One limitation of this study is the slight 
drop-off in ligand fitness in the latter half of the generations, which reduced the versatility of our screened 
ligands. Additionally, we found that AutoGrow works best with well-researched proteins such as PARP-130, so 
the relative novelty of 6sdx may also inhibit experimental efficacy.   

Shown below in Figure 2 is the binding pocket we used on 6SDX, including the main P-loop (G162 - 
M167) and other amino acids that ATP has been shown to interact with while binding. Using these amino acids, 
we determined the size of the binding pocket shown in red. Also shown is the structure of the amino acids in 
the binding site and their polar interactions with surrounding residues. The critical interactions between the 
binding site and the ligand in this pocket combined with the pocket’s remodeling upon binding imply that 
inhibitors here would significantly impact InvC function31.  
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Figure 2. Binding pocket on 6SDX 3-D structure  
 

Figure 3a depicts the evolution of the ligands from generation 0, generation 3, generation 7, and gen-
eration 10. Generation 0 depicts the spread of binding affinities of ligands from the Zinc database, while gen-
erations 3, 7, and 10 depict data from novel ligands developed by Autogrow through mutations and crossovers. 
Between generation 0 and generation 10, there is a visible increase in the proportion of ligands with binding 
affinities between -5 to -7.  
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Figure 3a. Autodock Vina Binding affinities from generations 0, 3, 7, and 10  
 

A shift from generation 0 to generation 3 is also present, though less obvious. Proportionally, there is 
a higher number of ligands with binding affinities from -4.5 to -6.5 in generation 3 compared to generation 0. 
The peak in the generation 3 graph occurs at –5.5 to -6.0 kcal/mol, while the peak in the generation 0 graph 
occurs at -4.5 to -5.0 kcal/mol. From generation 3 to generation 7, the spread of the graph decreases, and the 
graph shows an increased proportion of compounds with binding affinities from -6.0 to -7.0. The peak of the 
graph remains at the same binding affinity.  From generation 7 to generation 10, the proportion of compounds 
with binding affinities better than -5.0kcal/mol appears to decrease slightly, indicative of the previously dis-
cussed stagnation in later generations. 
 

 
 
Figure 3b. Average binding affinity across generations 
 

In evaluating AutoGrow, we conducted 2-sample T-tests comparing the mean binding affinity of each 
generation to the mean binding affinity of generation 0. Since each generation represents a small sample of an 
infinite population of compounds, we can use a t-test to estimate the true mean binding affinity of ligands in 
each generation and test for significant improvement across generations.  All three conditions required for a T-
test are met by each sample: the samples are random, chosen independently, and display relatively normal 
distributions. 

The mean binding affinity of each generation was compared to the mean binding affinity of generation 
0. We hypothesized that the mean binding affinity of generations 1-10 would be significantly smaller than the 
mean binding affinity of generation 0, setting a standard alpha-value of 0.05. The results of the significance test 
are shown below. 
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Table 1. Mean binding affinity score of each generation vs. generation 0 
 

Generation Sample Size Mean Binding 
Affinity 

(kcal/mol) 

Std. Dev 
(kcal/mol) 

P-value 

0 12787 -4.665 0.661 N/A 
1 478 -4.906 0.928 1.505 * 10^-8 
2 153 -4.852 0.904 0.0171 
3 156 -5.023 0.879 5.56 * 10^-8 
4 152 -5.050 0.942 6.98*10^-7 
5 148 -4.889 0.919 0.00185 
6 152 -4.9625 0.859 1.803 * 10^-5 
7 167 -4.954 0.879 1.834 * 10^-5 
8 163 -5.044 0.950 5.455 * 10^-7 
9 165 -4.912 0.976 7.19 * 10^-4 

10 158 -4.905 0.962 0.001 
 

Every generation expresses significantly better binding affinities than generation 0, as all p-values 
shown are less than 0.05. In comparison to the original compounds of the ZINC database, Autogrow’s algo-
rithms were able to generate novel small-molecule inhibitors that are significantly better. However, this table 
does not reflect significant improvement over successive generations; the small p-values could reflect an im-
provement in mean binding affinity in one generation but relative stagnation over the rest.  

In order to study AutoGrow’s efficiency over each generation, we also did 2-sample t-tests between 
each generation and the generation prior. We hypothesized a significant improvement in mean binding affinity 
from generation n to generation n + 1, with a standard alpha-value set to 0.05. Results are shown in the table 
below. 
 
Table 2. Mean binding affinity score of each generation vs. the previous generation 
 

Generation P-value 
0 & 1 1.49 * 10^-8 
1 & 2 0.74 
2 & 3 0.046 
3 &4 0.602 
4 & 5 0.934 
5 & 6 0.236 
6 & 7 0.533 
7 & 8 0.189 
8 & 9 0.891 

9  & 10 0.526 
0 & 1 1.49 * 10^-8 

 
Looking at this table, only two p-values are below the critical value (<0.05): there is significant im-

provement in mean binding affinity from generation 0 to generation 1, and from generation 2 to generation 3.  
Although there is overall progress after generation 1 (see Table 1), AutoGrow seems to stagnate without con-
sistent improvement between generations, with the exception of generation 3. This may be due to the relatively 
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unexplored structure of 6sdx compared to other proteins, especially the PARP-1 receptor that AutoGrow 4 was 
tested on.  Without enough information on protein structure, AutoDock Vina may not be able to accurately 
predict interactions during ligand binding. 

Finally, we present the lead compounds identified among 14690 evaluated ligands. Across generations, 
our adaptive screening produced 14 compounds with binding affinities at or above -7.0 kcal/mol, five of which 
are original Zinc Database compounds, and the others novel mutations produced by AutoGrow4. The structure, 
highest binding affinity, and the first six digits of the compound code are provided in Figure 4.  
 

 
 
Figure 4. Best-performing compounds across all generations by binding affinity 
 

Discussion 
 
While these compounds must be evaluated in vitro to reach definite conclusions, our novel ligands exhibit 
promising binding properties against Salmonella ATPase. Because heavy displacement of the P-loop is associ-
ated with ATP-analog binding, the disruption of those critical domains is likely to halt ATP hydrolysis32. With-
out a functional ATPase enzyme, almost all pathogens are unable to properly inject effectors. This sabotages 
their ability to subvert host cell function, alter cytoskeleton structure, and evade immune system responses6. 
Although the exact mechanisms linking ATP hydrolysis to the formation of the injectosome and secretion of 
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protein effectors are not fully understood, several experiments have found a direct causal relationship between 
loss-of-function InvC mutations and loss of virulence33, 34. 

In addition, the small molecules exhibit optimal molecular size and lipophilicity conditions that max-
imize clinical potential, making them promising agents against antibiotic-resistant Salmonella. Because many 
T3SS-dependent bacteria have similar secretion systems, the compounds identified here for Salmonella ATPase 
inhibition are favorable for broad-spectrum therapeutic development. The central T3SS ATPase among gram-
negative bacteria is highly conserved, generating potential for T3SS inhibitors to treat a variety of infections.  

The work presented also evaluates AutoGrow4’s efficacy as a novel drug-design tool, for it is one of 
few open-source ligand evolution programs. AutoGrow4 enables discovery at a speed much faster than ex silico 
experimentation, with the capability to screen thousands of compounds and evolve them into a smaller group 
of energetically favorable ligands, introducing many possibilities for drug discovery and lead optimization. 
Although AutoGrow4 works less optimally without extensive knowledge of the target binding pocket and 
known inhibitors, there is still clear improvement in mean binding affinity across ten generations in our exper-
iment. In addition, most compounds generated by AutoGrow are chemically feasible, and several filters (such 
as the Lipinski Strict Filter, the Ghose filter, or the VandeWaterbeemd Filter) can customize compound results30.  

In combination with open-source chemical databases like ZINC, our work presents a viable and en-
tirely open-source workflow for the discovery of chemical inhibitors and lead optimization toward the treatment 
of new biological targets. We demonstrate the plausibility of this workflow by presenting fourteen promising 
compounds for T3SS inhibition that surpass the binding efficacy of many FDA-approved therapeutics40. In an 
era of widespread antibiotic resistance and skyrocketing demand for improved therapeutics, exploring new 
pathways for efficient drug discovery is vital. 
 

Limitations 
 
Our study is limited by computational capabilities, available research on the ATPase InvC protein, and labora-
tory access. Thus, directions for future research include expanding the scope of generation 0 ligands and syn-
thesizing the best-performing lead compounds for subsequent in-vitro evaluation. It is impossible to confirm a 
compound’s inhibitory ability in pathogens only by knowing its computational binding efficacy. However, with 
protein structure modeling algorithms growing fast using Deep Learning and AI, AutoGrow4 should soon have 
even broader applications and provide more accurate results30. 
 

Methods 
 
Receptor Preparation 
 
The 6sdx  protein was obtained as a .pdb file from RCSB31. The protein was prepared for docking in PyMol, 
with all ligands removed (labeled residues 501-506 in the protein sequence). All water was removed. The pro-
tein was properly protonated using the PDB2PQR webserver tool from UCSF36, and the resulting .pqr file was 
converted back to .pdb using Open Babel37. 
 In order to obtain the center of the binding pocket and the size of the binding pocket, the open-source 
Python algorithm Scoria was used38. Amino acid residues 162-167, 338, and 409- 411 were used as the binding 
pocket, justified in the results section. This gave us a binding pocket center of (34.681, -13.6825, 10.3986) for 
x, y, and z respectively, and a binding pocket size with dimensions (12.0, 20.0, 12.0), for length, width, and 
height.  
 
Ligand Sourcing 
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The initial pool of compounds is sourced from the ZINC-15 database, which has over 120,000,000 commer-
cially available compounds for virtual screening. Selected compounds had a molecular weight between 150 to 
250Da and a LogP value less than 5, with any level of reactivity. Compounds were then filtered with the Lipinski 
strict filter and converted into SMILE strings. The compounds were sorted into functional groups, and 100 
compounds were randomly selected from each functional group. In total, this created an initial pool of 16,603 
compounds (though generation 0 is slightly smaller due to AutoGrow’s inability to dock certain compounds in 
time).  
 
AutoGrow4 
 
To produce novel compounds with improved binding affinities, we used AutoGrow430. AutoGrow can draw 
from an initial pool of molecules to synthesize new generations of ligands, and ranks this new generation by 
docking each compound, taking the top molecules, or seeds, of each generation for the next. AutoGrow gener-
ates this new population through three different methods: an elitism operator, a mutation operator, and a cross-
over operator, which ideally creates a pool of compounds with better binding affinity than the previous. The 
6sdx protein was processed and submitted as a .pdb, and the binding coordinates were obtained using Scoria, 
as explained previously.  We ran AutoGrow for 10 generations, using MGLTools for conversion from .pdb 
to .pdbqt, and the default RDKit chemoinformatics reactions as the reaction library. AutoGrow 4 uses Quick-
Vina 2 as its default docking platform39, which we did not modify. For molecular filters, we used the Lipinski 
Leniency Filter, as well as the Rank Selector for subsequent generations to prevent duplicates. In the first gen-
eration, we seeded 70 molecules from mutations and crossovers to the next generation alongside 100 elite mol-
ecules; for each subsequent generation, we seeded 50 molecules from mutations and crossovers, alongside 100 
elite molecules for the next generation. The molecules from the Zinc database were first docked and scored to 
create a generation 0 before the selection process began for generation 1. This gave us a compiled folder of the 
molecules created each generation, their binding affinity, and the SMILE string for the molecule. The data was 
then compiled into graphs and tables for processing.  
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