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ABSTRACT 
 
From Apollo 11 to India’s Chandrayaan-3, humans have put a vast amount of effort into exploring the moon. 
While analysis on the lunar surface provides valuable information for humans, costly and risk-taking problems 
of lunar exploration resulted in such scant amount of data accessible to the lunar landscape to this day. None-
theless, study on lunar landscape remains pivotal for probing resources, detecting hazards, and studies on moon 
evolution. In addition, analysis on the lunar surface is the ground for future development on the moon as a 
potential site of resources, identifying safe landing sites, and further civilization. In this study, I propose a 
machine learning-based lunar landscape image semantic segmentation system. Given lunar landscape images, 
the proposed method outputs semantic segmentation maps that separate different types of objects such as the 
ground, sky, and rocks. These segmented objects potentially provide valuable insights for guiding autonomous 
investigation rovers. The proposed method is trained on a synthetic lunar landscape dataset and evaluated on 
both synthetic and real lunar landscape samples. Through comprehensive experiments, it is demonstrated that 
the proposed method exhibits domain adaptation capabilities, achieving state-of-the-art performance on real 
lunar landscape images. 
 

Introduction 
 
From Apollo 11(Gisler and Sornette 2009) to India’s Chandrayaan-3 (Sinha et al. 2023), humans have put a 
vast amount of effort into exploring the moon. While analysis on the lunar surface provides valuable information 
for humans, costly and risk-taking problems of lunar exploration resulted in such scant amount of data accessi-
ble to the lunar landscape to this day. Nonetheless, study on lunar landscape remains pivotal for probing re-
sources, detecting hazards, and studies on moon evolution. In addition, analysis on the lunar surface is the 
ground for future development on the moon as a potential site of resources, identifying safe landing sites, and 
further civilization. 

In this research paper, I present a novel domain adaptation technique aimed at reducing the distribution 
gap between synthetic and real datasets. I introduce a gradient reversal layer to reverse the gradient during 
backpropagation. This gradient reversal layer guarantees that the trained network focuses on generating con-
sistent activation maps. The structure of this research paper is as follows: Section 2 provides background 
knowledge to facilitate an understanding of the research. Section 3 explains every detail of the proposed ap-
proach, including implementation specifics. Section 4 offers comprehensive experimental results and insights 
into the proposed approach, while Section 5 provides a summary of the paper. 
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Related Work  
 
Lunar Landscape Dataset 
 

 
 
Figure 1. Samples of lunar landscape dataset (real images above and synthetic images below) 
 
Figure 1 displays samples from the lunar landscape dataset. The focus of this research lies in the domain of 
image semantic segmentation specifically tailored for lunar landscapes, a critical aspect for advancing the ca-
pabilities of autonomous rovers and enhancing resource investigation on celestial bodies. Creating an accurate 
machine learning model demands a substantial dataset which allows the algorithm to learn diverse patterns in 
lunar landscape imagery. However, the practicality of acquiring lunar landscape image samples is severely 
constrained by the current limitations in space exploration technology (very costly). Given the current inability 
to physically visit the Moon at will, constructing a dataset solely from real lunar images becomes an unattainable 
task. 

To address this problem, a practical approach involves the careful synthesis of artificial lunar land-
scape images. This synthetic dataset becomes a feasible alternative which enables the training of machine learn-
ing models in a controlled environment. Nonetheless, a notable hurdle arises from the inherent differences in 
distribution between real and synthetic datasets. The dissimilarities in visual characteristics, lighting conditions, 
and surface textures impact the model's ability to generalize effectively, potentially leading to suboptimal per-
formance in real-world lunar scenarios. 

The objective of this research is to minimize the distribution gap between the synthetic and real da-
tasets. I propose a novel training approach designed to enforce the trained model to extract consistent image 
features. A thorough explanation of the proposed approach will be presented in Section 3. 
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Image Semantic Segmentation 
 

 
 
Figure 2. Samples of image semantic segmentation (Lin et al. 2017) 
 
Figure 2 illustrates the output of the image semantic segmentation system. Image semantic segmentation is a 
computer vision task that divides an inputted image into semantically meaningful regions. In simpler terms, the 
goal is to understand and categorize the content of an image at the pixel level. Unlike object detection, which 
provides bounding boxes around objects, semantic segmentation aims to precisely classify each pixel in the 
image.  

Image semantic segmentation finds applications across various domains due to its ability to provide 
detailed and precise understanding of image content. In medical imaging, semantic segmentation aids in the 
identification and delineation of anatomical structures and abnormalities (Taghanaki et al. 2021). It is used in 
tasks such as tumor detection, organ segmentation, and disease diagnosis. Analyzing satellite images for land 
cover classification, urban planning, and environmental monitoring benefits from semantic segmentation 
(Neupane et al. 2021). It allows the identification of different types of terrain, vegetation, and land use. 
 

Proposed Method 
 
In this section, I provide a comprehensive overview of the proposed lunar landscape semantic segmentation 
method. The subsequent chapters are organized into three parts: baseline image semantic segmentation, the 
proposed domain adaptation method, and implementation. 
 
Baseline Image Semantic Segmentation 
 

 
 
Figure 3. Architecture of the naïve approach for lunar landscape segmentation. 
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Figure 3 illustrates the naive approach to image semantic segmentation. Image semantic segmentation networks 
often adopt the UNet (Ronneberger et al. 2015) architecture due to its demonstrated promise and comparable 
performance in tasks related to image semantic segmentation. The UNet architecture consists of an encoder and 
a decoder. The encoder receives the input image and generates activation maps containing visual characteristics 
of the input image, which, in this research, represents lunar landscape images. The decoder utilizes these acti-
vation maps as input to generate the semantic segmentation map. Both the encoder and decoder are implemented 
using convolutional neural networks. This well-established semantic segmentation method typically ensures 
comparable results when the distribution of training and testing data is similar, a common scenario in general 
machine learning problems.  

However, as mentioned earlier, due to the unique characteristic of the lunar landscape dataset (una-
vailability of direct visits to the moon for data collection), synthetic datasets are employed. Despite the careful 
generation of these datasets, a distribution gap remains between real and synthetic data, leading to performance 
degradation when evaluating the trained model with the synthetic dataset. For this reason, it is necessary to 
develop domain adaptation techniques to narrow the distribution gap during the training process, aiming for a 
more accurate model.  
 
Proposed Domain Adaptation Method 
 

 
 
Figure 4. Architecture of the proposed domain adaptation method 
 
Figure 4 illustrates the proposed domain adaptation method for lunar landscape semantic segmentation. This 
method extends the aforementioned UNet-like architecture. The proposed method is composed of an encoder, 
a decoder and a fake/real classifier with a gradient reversal layer. The encoder processes input images to produce 
activation maps, and the decoder generates semantic segmentation maps.  
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Throughout this process, I introduced an additional fake/real classifier that takes the activation maps 
as input. This module is responsible for determining whether the activation maps are generated from real or 
synthetic images. As the model undergoes training, it is expected that the fake/real classifier becomes more 
accurate. Here, the objective is to ensure the consistent generation of activation maps from both synthetic and 
real images, making it challenging for the fake/real classifier to distinguish between the two sources. More 
specifically, if the encoder successfully generates consistent activation maps regardless of the source of input 
images, the real/fake classifier cannot accurately determine the classification.  

To accomplish this, I propose a gradient reversal layer between the encoder and the fake/real classifier, 
reversing the gradient during backpropagation (gradient descent). This gradient reversal layer guarantees that 
the encoder focuses on enhancing its proficiency in generating consistent activation maps (domain adaptation 
ability), while concurrently aiding the fake/real classifier in improving its capacity to distinguish between real 
and generated data. The effectiveness of this approach is further elaborated in Section 4 through comprehensive 
experimental results. 
 
Implementation 
 
The proposed domain adaptation approach is versatile, allowing its application to various network architectures. 
I have applied this ad-hoc approach to train several well-established image semantic segmentation architectures, 
including PSPNet (Zhao et al. 2017), Multipath-RetineNet (Lin et al. 2017), IDW-CNN (Wang et al. 2017), 
CASIA_IVA_SDN (Fu et al. 2019), and DeepLabV3 (Chen et al. 2017). The training process involves employ-
ing the dice coefficient loss function which is commonly used for training image semantic segmentation net-
works. Equation 1 provides an explanation of the dice coefficient loss function.  

Equation 1: Dice coefficient loss function 
 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 
 In equation 1, scoredice denotes the dice coefficient score calculated by equation 2 below.  

Equation 2: Dice score 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  =
2 ∗ |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝐺𝐺𝐺𝐺|
|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| + |𝐺𝐺𝐺𝐺|

 
 
 Where, Pred and Gt represent the prediction of the trained model and its ground truth. The dice coef-
ficient loss function quantifies the similarity between prediction and its ground truth pixel sets. It measures the 
agreement between the predicted segmentation and the ground truth. During the training process, the model 
learns to maximize the overlap between the predicted and true segmentation masks. Further investigation into 
the detailed performance comparison and effectiveness of the proposed gradient reversal layer is presented in 
Section 4.  
 

Experimental Results 
 
Dataset 
 
The synthetic lunar landscape dataset comprises a total of 9,766 realistic images generated through a simulation 
process. These synthetic images aim to emulate the visual characteristics and diversity of lunar terrains. In 
addition to the synthetic dataset, 36 real moon images are incorporated into the study. To train and evaluate the 
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proposed semantic segmentation model, 80% of the synthetic dataset, amounting to 7,812 images, is utilized 
for training, while the remaining 20%, consisting of 1,954 images, is reserved for model evaluation. The syn-
thetic dataset is annotated with three distinct labels such as sky, small and large obstacles. Some visual examples 
of the dataset are illustrated in Figure 5. 
 

  

(a) (b) 

 
Figure 5. Visual example of dataset, (red: sky, blue: big obstacles, and green: small obstacles) 

 
Intersection over Union 
 
The performance of the proposed semantic segmentation model is quantitatively assessed using the Intersection 
over Union (IoU). IoU measures the overlap between predicted and ground truth segmentation masks and is 
defined as the size of the intersection divided by the size of the union of the predicted and ground truth regions 
as shown in Figure 6. The IoU is computed separately for each class, allowing for a detailed understanding of 
how well the model performs in segmenting specific lunar landscape features, such as the sky, small obstacles, 
and large obstacles. 
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Figure 6. Illustration of intersection over union 
 

High IoU values indicate a strong alignment between the predicted and ground truth segmentation 
masks, signifying accurate and reliable semantic segmentation.  
 
Performance Comparison 
 
Table 1. IoU comparison with the state-of-the-art semantic segmentation methods 
 

Method Sky Small Obstacle Large Obstacle Total 
PSPNet 

(Zhao et al. 2017) 
84.4 

80.4 82.8 82.7 

Multipath-RetineNet 
(Lin et al. 2017) 

84.5 
81.2 82.8 82.8 

IDW-CNN 
(Wang et al. 2017) 

84.7 
81.1 83.9 83.8 

CASIA_IVA_SDN 
(Fu et al. 2019) 

86.1 
82.8 84.2 84.6 

DeepLabV3 
(Chen et al. 2017) 

86.8 
83.3 85.2 85.6 
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Figure 7. IoU comparison with the state-of-the-art semantic segmentation methods (graph) 
 
I initially conducted a performance comparison experiment involving five well-established image semantic 
segmentation methods: PSPNet (Zhao et al. 2017), Multipath-RetinaNet (Lin et al. 2017), IDW-CNN (Wang et 
al. 2017), CASIA_IVA_SDN (Fu et al. 2019), and DeepLabV3 (Chen et al. 2017). As shown in Table 1 and 
Figure 7, DeepLabV3 demonstrated the highest accuracy, outperforming the other methods, which yielded 
comparatively inaccurate results. 

All these experimental results were derived from a trained model that employed the proposed training 
strategy. To assess the effectiveness of the proposed training approach (particularly the use of gradient reversal), 
I further conducted an ablation study. 
 
Ablation Study 
 
Table 2. Ablation study result (proposed gradient reversal) 
 

 
Method 

Ablation Model Proposed Model 
Synthetic Real Synthetic Real 

PSPNet 
(Zhao et al. 2017) 

83.0 
69.5 82.7 79.5 

Multipath-RetineNet 
(Lin et al. 2017) 

82.9 
71.4 82.8 80.2 

IDW-CNN 
(Wang et al. 2017) 

83.8 
71.0 83.8 81.4 

Volume 13 Issue 1 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 8



CASIA_IVA_SDN 
(Fu et al. 2019) 

84.9 
76.7 84.6 82.5 

DeepLabV3 
(Chen et al. 2017) 

85.8 
83.8 85.6 83.8 

 

 
 
Figure 8. Ablation study result (proposed gradient reversal)  
 
To examine the impact of the proposed method, I initially trained each semantic segmentation method without 
employing the proposed approach, which I refer to as ablation models in Table 2. Subsequently, I assessed the 
trained method on both synthetic and real datasets, as depicted in Table 2. I then quantified the performance 
gap for each ablation model. I trained the identical semantic segmentation model using the proposed training 
approach and measured the performance gap exactly as before. Finally, I measured how this performance gap 
differs between models trained without and with the proposed training approach. 

As illustrated in Figure 8, the performance of each model trained with the proposed approach shows a 
slight decrease during real data evaluation. However, the reduction is relatively small compared to models 
trained without the proposed approach. These experimental results clearly demonstrate that the proposed gra-
dient reversal approach functions as a domain adaptation technique, mitigating the performance degradation 
when applied to real-world data samples. 
 

Conclusion 
 
In this research, I proposed a novel domain adaptation method for lunar landscape semantic segmentation. The 
proposed machine learning-based approach, leveraging a synthetic lunar landscape dataset, showcased promis-
ing results. The comprehensive evaluation, encompassing both synthetic and real lunar landscape samples, un-
derlined the model's adaptability and domain generalization capabilities. Notably, the incorporation of the pro-
posed gradient reversal training approach demonstrated a crucial role in preventing performance collapse when 
transitioning to real-world data samples. This research makes a valuable contribution to the domain of lunar 
landscape semantic segmentation. In future studies, I plan to expand the scope by introducing additional seg-
mentation categories, specifically focusing on applications related to resource search and the autonomous nav-
igation of rovers. 
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