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ABSTRACT 
 
The planning and building of houses is time-consuming and takes a financial toll, causing housing development 
to struggle to keep up with rapidly growing populations. In the rapid expansion of living spaces, the environ-
mental implications of such developments are frequently disregarded. Though few recent scientists have at-
tempted to leverage machine learning to expedite the house modeling process, these models do not take into 
consideration environmental factors such as geographic location, temperature, and landscaping. There is a 
pressing need for developing an automated and accurate system that offers comprehensive interpretation of 
architectural blueprints, providing essential guidance and insights for various aspects of the construction pro-
cess. This study incorporates these factors by leveraging machine learning to develop software models for cost-
effective and environmentally sustainable housing. To address the aforementioned problem, I propose a ma-
chine learning-based semantic segmentation network for architectural blueprint interpretation. The proposed 
method is designed to address the complex task of understanding architectural blueprints, discerning room types 
and their spatial arrangement. To achieve semantic segmentation, I employ convolutional neural networks 
widely recognized for their effectiveness in image analysis tasks. I also introduce a material recommendation 
method that aligns with the geographical context of the construction site. Through extensive experiments, it is 
shown that the proposed method outperforms the previous state-of-the-art method in accurately generating se-
mantic segmentation maps for the inputted blueprint images. I expect that these superior segmentation results 
will significantly enhance the architectural planning process by providing architects and designers with a more 
detailed and informative representation of blueprint layouts, thus aiding in better decision-making and design 
refinement.  
 

Introduction 
 
Problem Definition 
 
The rapid expansion of urban areas and the global population have given rise to an unprecedented demand for 
housing and infrastructure development. Due to this, the construction industry finds itself facing two challenges: 
the need for expeditious architectural planning and to adopt environmentally sustainable practices. Architects 
and construction professionals need to work efficiently to design and plan new structures. Any delays or inef-
ficiencies in the architectural planning phase can result in increased costs. Nevertheless, a frequent challenge 
arises from the misinterpretation of the blueprints, which not only prolongs the process but also drives up costs 
significantly.  
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To solve this problem, there is a need to develop an automated blueprint interpretation system to reduce 
errors, enhance efficiency, and ultimately facilitate cost-effective and sustainable construction projects. Addi-
tionally, with the increasing availability of digital architectural blueprints and data, there is an opportunity to 
leverage technology, such as machine learning, to expedite the interpretation process. 
 
Proposed Method 
 
In this paper, I proposed a novel machine learning-based semantic segmentation network for architectural blue-
print interpretation. This system aims to expedite the blueprint interpretation process through discerning room 
types and their spatial arrangement. To create this network, I leverage convolutional neural networks as they 
are effective in computer vision analysis. With geographical input from the user, the model also outputs material 
recommendations to the environmental benefit of the house’s location.  

The structural organization of this research paper is as follows. Chapter 2 provides a comprehensive 
introduction to the necessary background knowledge required for a clear understanding of the proposed method. 
Chapter 3 explains the details of the proposed method. In Chapter 4, we present an extensive analysis of exper-
imental results. In conclusion, Chapter 5 provides a summary and conclusion of the paper. 
 

Background Knowledge  
 
Blueprint Image  
 

 
 
Figure 1. Example of architectural blueprint image 
 
Architectural blueprints are used for planning and constructing buildings. They are a reproduction of a technical 
or engineering drawing. As displayed in Figure 1, blueprints are 2D drawings with building features such as 
doors, furniture, and windows indicated with symbols. Architectural blueprints are key to communicating the 
building plan between anyone working on the project and the building team.  

Architectural blueprints use a standardized set of symbols, lines, and notations to represent various 
elements of a building, such as walls, doors, windows, and electrical systems. Deciphering these symbols and 
conventions can be daunting for those not trained in reading blueprints. Also, to understand and read the blue-
print images, people need to be able to visualize how different elements fit together in space and understand the 
spatial relationships between rooms, components, and systems. This spatial visualization skill can be challeng-
ing for some people. To address this issue, in this paper, I present a novel approach employing image semantic 
segmentation. Detailed information regarding image segmentation is provided in Chapter 2.2. 
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Image Segmentation 
 
Image segmentation is one of the most common computer vision techniques that divides an image into multiple 
meaningful and distinct regions or segments. These segments are typically based on certain criteria such as 
color, intensity, texture, or other visual properties. The goal of the image segmentation task is to simplify the 
representation of an image by partitioning it into smaller, more manageable and semantically meaningful re-
gions as shown in Figure 2.  
 

 
 
Figure 2. Example of image segmentation (Geiger et al. 2013), (left: input image, and right: output segmenta-
tion map) 
 

Image segmentation has a wide range of applications across various machine learning fields such as 
medical image analysis, environmental monitoring, and object detection and recognition. Numerous research 
studies have been proposed to develop image segmentation architectures (Minaee et al. 2021).  

In this research, I address architectural blueprint interpretation using image segmentation techniques. The 
proposed blueprint interpretation system produces segmented regions that can pinpoint specific areas like kitch-
ens, rooms, and living rooms within architectural blueprint images. Comprehensive details, including the net-
work design and training strategy, will be elaborated in Chapter 3. 
 

Proposed Method 
 

 
 
Figure 3. Architecture of the proposed architectural blueprint segmentation network 
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Figure 3 provides an overview of the architectural blueprint segmentation network proposed in this research 
paper. The network is constructed using the U-Net architecture (Ronneberger et al. 2015), featuring both a 
convolutional neural network-based encoder and decoder. The encoder processes an architectural blueprint im-
age as its input, producing a latent code that encapsulates meaningful mathematical features extracted from the 
input blueprint image. The decoder utilizes this latent code to generate a segmentation map that segments the 
specific rooms within the house. In the following subheading chapters, I will explain the detailed steps of each 
component including their mathematical formulations and associated loss functions. 
 
Encoder and Decoder 
 
The input image, the architectural blueprint image, is symbolized as I. This input image, is defined as I ∊ RHW 
where H and W denote the height and width of I, respectively. This image is placed into an encoder, E: I → Z, 
where Z ∊ RL represents the latent code and L denotes the dimension of the latent code. The latent code consists 
of high-dimensional vectors, with each dimension representing a specific feature extracted from the input blue-
print image, such as the location or the type of a particular room area. The latent code passes the decoder which 
then outputs the semantic segmentation map of the blueprint, recognizing and classifying each of the areas 
within the blueprint image. This is then run through the decoder, D: Z→S, where S represents the final image, 
the segmentation map, where S ∊ RHW with H representing the height and W representing the width of the map. 
While both the encoder and decoder implement convolutional neural networks, the encoder has a down sam-
pling layer while the decoder has an up sampling layer. 

To construct the proposed encoder and decoder, I utilized six convolutional neural network architec-
tures that have shown comparable performance in general image semantic segmentation. A detailed result of 
the comprehensive experiments can be found in Chapter 4. 
 
Loss Function and Implementation Details  
 
For training the proposed blueprint semantic segmentation system, I employed the Dice coefficient loss func-
tion, as depicted in Equation 1. The loss function quantifies how inaccurate a model is at predicting or classi-
fying a data set. During the training process, a gradient descent algorithm is applied to minimize this loss, 
which, in turn, helps the model make better predictions. 

Equation 1: Dice coefficient loss function 
 

 
 

Here, PRED and GT denote the prediction and ground truth respectively. As formulated in Equation 
1, the loss function is determined by two times the intersection of GT and PRED divided by the sum of GT and 
PRED all subtracted from 1. With this formula, the loss function should return 0 when the function is completely 
accurate while it should return 1 if it is not accurate at all.  
 
Material Recommendation Module 
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Figure 4. Flow chart of the proposed material recommendation module 
 
Figure 4 describes the method in which the module ultimately proposes the materials recommendation. The 
user must input longitude, latitude, and the city name in which the residence will be constructed. The module 
uses this information by parsing through geographic data collected from google. From here key measurements 
including temperature, humidity levels, and wind from the area are collected to be analyzed and provide a final 
recommended materials list.  
 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 
Figure 5. Example of building exterior finishing materials 
(a): exposed concrete, (b): stucco, (c): siding, (d): masonry, (e): reclaimed bricks, (f): western red cedar, (g): zinc, 
and (h): metal sandwich panel 

 
Figure 5 illustrates various examples of building exterior finishing materials. The selection of these 

materials is a critical consideration to ensure the durability and maintenance of a building, especially in response 
to weather, temperature fluctuations, and other factors. 

Exposed concrete is frequently used when aiming for a sophisticated design, but it is susceptible to 
heat loss, and achieving complete external insulation is not easy, and it can be quite costly. Therefore, it is 
recommended for use primarily in areas with cooler weather. Starco wall finishing has the advantage of provid-
ing both insulation and finishing simultaneously. It is relatively cost-effective, but it is vulnerable to fire, so it 
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is not recommended for use in dry regions. In the case of siding, ensuring effective prevention of water leakage 
from external rainfall can help reduce problems and incidents. When it comes to zinc finishing, minimal joints 
between the panels and well-finished flashing details alleviate concerns about leakage. Due to its elegant ap-
pearance, it is being widely used in recent buildings.  
 

Results 
 
Dataset 
 
As shown in the Table 1, the dataset consists of three categories of residence: apartments, multiplex housing, 
and houses. Each datapoint consisted of an input, the blueprint, and the ground truth, the residence category.  
 
Table 1. Dataset sample distribution  
 

Residence Type Amount of Data 
Apartment 33,998 (81.8%) 

Multiplex Housing 3,871 (9.32%) 
House 3,687 (8.88%) 
Total 41,556 

 

 

 

 

(a) (b) (c) 

 
Figure 6. Example of blueprint images 
(a): Apartment, (b): multiplex housing, and (c): house 

 
Figure 6 displays an example of blueprints for each type of residence. In comparison to (a) and (b), 

the blueprints of (c) are much more diverse. The model was trained through this dataset, searching for patterns 
within each category of residence to ultimately be able to accurately identify which type of residence a blueprint 
is representative of.  
 
Evaluation Metrics 
 
In this study, the mean intersection over union (IoU) is used to evaluate the accuracy of a model. As mathemat-
ically represented in Equation2, the intersection over union takes the intersection between the data input and 
the model’s prediction and divides by the union of the data input and the model’s prediction. In this way, the 
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most inaccurate prediction will result in an IoU of 0 while the most accurate prediction will result in an IoU of 
1.  

Equation 2: Intersection over union 
 

 
 
 Here, GT ad Pred denotes the ground truth and model’s prediction, respectively.  
 
Performance Comparison  
 
The evaluation metrics of this study were measured and compared to other models through three different chan-
nels: Multiplex Housing, Apartments, and Houses. The following chart represents the results from these evalu-
ation metrics:  
 
Table 2. Performance comparison 
 

Method Multiplex 
Housing 

Apartment House Total 

PSPNet 
(Zhao et al. 2017) 

82.4 
82.8 81.1 81.8 

Multipath-RetineNet 
(Lin et al. 2017) 

82.9 
84.1 81.0 83.1 

Resnet-38-MS-COCO 
(Wu et al. 2019) 

83.7 
85.2 81.5 84.0 

IDW-CNN 
(Wang et al. 2017) 

84.3 
85.7 81.7 84.6 

CASIA_IVA_SDN 
(Fu et al. 2019) 

85.4 
86.8 82.3 85.6 

DeepLabV3 
(Chen et al. 2017) 

87.2 
88.5 83.9 87.9 

 
As shown in Table 2, the number in the cell represents the accuracy of the model, with greater numbers 

indicating greater accuracy. The last row in this table displays the metrics of the DeepLabV3, which proves to 
have higher accuracy than the other models. These evaluation metrics provide a method of comparison, proving 
the greater accuracy of this study’s model.  
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Figure 7. Performance Comparison Between Various Models 
 

Figure 7 models the results of the calculated mIoU values for each channel in a line graph. The figure 
shows a clear distinction between the DeepLab V3model in comparison to the other models. DeepLabV3 is 
significantly more accurate than all the other tested models in each of the channels. The second most accurate 
model was the CASIA_IVA_SDN, which also performed better than the other models in all channels.  
 
Qualitative Experiment 
 

 
 

(a) (b) 
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(c) (d) 

 
Figure 8. Example samples of qualitative experiment 
(a): house, (b): multiplex housing, (c): apartment, and (d): house  

 
Figure 8 presents samples from a visual qualitative experiment. Each colored box indicates the location and 
type of specific rooms. For instance, purple and blue boxes represent the living room and bedroom, while pink 
and green boxes denote the dressing room and storage.  

The proposed system tends to produce poor results when dealing with non-rectangular areas commonly 
found in house blueprints. This issue stems from the training sample annotations, which are exclusively in 
rectangle shapes. I anticipate that this problem can be easily addressed by employing a more detailed polygon 
annotation format. 
 

Conclusion 
 
In this paper, I proposed the use of a machine learning-based semantic segmentation network for architectural 
blueprint interpretation to eliminate the inefficiencies in the blueprint interpretation and residence construction 
process. I then use convolutional neural networks to introduce a material recommendation method to promote 
environmentally aware construction decisions. Overall, the experimental results prove that this new model is 
more efficient and accurate in comparison to other models that attempt to achieve similar goals. 
For the future, I intend to further the accuracy and efficiency of this model as well as add more features and 
variables to improve recommendation outputs.  
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