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ABSTRACT 

Due to climate change and global warming, power outages have been increasing in frequency and severity. 
Such power outages not only cause disruptions to day-to-day life but also endanger hospital patients and people 
using power-reliant medical equipment at home, as well as elderly people relying on cooling and heating. With 
such an increase in power outages, it becomes imperative to find a solution to mitigate the impacts and fre-
quency of such power outages. This paper analyzes the relationships between power outages and climate fac-
tors, such as temperature, precipitation, humidity, wind speed, and solar radiation to determine which are the 
most significant. Machine learning techniques are used to develop predictive models to identify climate condi-
tions that are likely to cause power grid failures. In addition, this paper also investigates the use of these models 
in analyzing the resiliency of power grids. This study is focused on the West Coast of the United States. The 
climate factors and power outage data from 2017-2023 are used in this analysis. Artificial Neural Networks 
(ANN) were developed to perform the analysis. The results obtained during this research indicated that the 
ANN models were not effective in predicting power outages based on weather factors for the locations chosen. 
This is likely due to the highly skewed data sets, as well as existing robustness of these locations against weather 
related factors. Future work should include applying such modeling on other locations that are more susceptible 
to weather related power outages as well as investigating other modeling techniques. 

Introduction 

According to the US Energy Information Administration, customers across the nation experienced power out-
ages averaging 8 hours in length in 2020 (U.S. Energy Information Administration, 2020). Climate change 
increases the number of severe weather events responsible for power outages. Rising temperatures caused by 
climate change mean more power is being used by consumers, stressing the grid and increasing the probability 
of a power outage (EPA, 2023). Between 2000 and 2021, about 83% of reported major outages in the U.S. were 
attributed to weather-related events, with 58% caused by severe weather, such as high winds, rain and thunder-
storms, 22% caused by winter weather, including snow, ice, and freezing rain, and 15% caused by tropical 
storms and hurricanes (“Surging Weather-related,” 2022). The average annual number of weather-related power 
outages increased by roughly 78% during 2011-2021, compared to the previous decade. 

Without power, utilities like lights and refrigerators are not able to function, resulting in food wastage. 
Without functioning air conditioning or heating, impacts of hot and cold weather become more severe. Other 
than interruptions in day-to-day life, power outages can shut down power-reliant medical equipment used by 
hospitals and households, with potentially life-threatening impacts (Suiskind, 2023). Power outages have direct 
impacts on the United States economy, where weather-related outages are estimated to have cost an inflation-
adjusted annual average of $18 billion to $33 billion (Council of Economic Advisors, 2013). Data from various 
studies lead to cost estimates from storm-related outages to the U.S. economy at between $20 billion and $55 
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billion annually (Campbell, 2012). Power outages affect businesses in revenue loss, damaged equipment, de-
creased productivity, ineffective customer care, data loss, and supply chain ripples (Suiskind, 2023). 

Because of the severity of these power outages, and their increased frequency due to climate change, 
it becomes imperative to mitigate their effects. This paper analyzes the relationships between different climate 
factors and power outages to determine which factors have the predominant impact by modeling their relation-
ship with predictive techniques. 
 

Background 
 
Previous research work has looked into modeling the impact of various factors on power outages. Poulos and 
Camp (2010) developed a decision support system to identify hazard trees along the transmission line right-of-
way (ROW). Wanik et al. (2017) showed the importance of including LiDAR-derived tree height data in outage 
model predictions during Hurricane Sandy in Connecticut. Kenward and Raja (2014) have done studies that 
show how power outages have increased over the years due to climate change’s impacts. Some research work 
has focused specifically on hurricane-related power outage modeling (Guikema et al., 2014; Quiring et al., 
2014). Shashaani et al. (2018) predicted power outages caused by hurricanes using a multistage classification-
regression system. Watson et al. (2022) modeled the impacts of extreme weather events on power grids.  

Neural network-based machine learning models have proven to be highly successful in predictions of 
complex systems. A neural network is a system of interconnected nodes that predicts an outcome based on a 
series of inputs. The different connections between nodes have weights, dictating how much of an impact that 
connection has on the final result. In between the input layer and the output layer, a group of hidden layers are 
added. These models are able to represent the complex relations between multiple input parameters and an 
output parameter.  During the training phase, known input and output combinations are provided to the model. 
The model compares its computed outputs against the expected output and iteratively updates the weights to 
minimize the error. After training is completed, the performance of the model is tested with a testing dataset 
which is different from that used in training.  

In this study, we model the relationship between climate factors and the occurrences of power outages 
using such neural network-based machine learning models. In addition, we will use sensitivity analysis tech-
niques to identify inputs that have the most impact on the outcome of the model. 
 

Methodology 
 
Data Collection 
 
Daily weather data from October 2017 to July 2023 was downloaded from Visual Crossing (VC Corporation, 
n.d.) for 10 cities on the West Coast: Fresno, CA; San Francisco, CA; San Jose, CA; San Diego, CA; Los 
Angeles, CA; Tacoma, WA; Bellevue, WA; Seattle, WA; Vancouver, WA; and Eugene, OR. The data included 
temperature, humidity, wind speed, precipitation, and solar radiation.   

For each of the 10 locations, power outages of those cities were downloaded from BlueFire LLC (n.d.). 
This data included the number of customers, the maximum number of customers who had power outages, the 
total amount of customer hours tracked, and the total amount of hours customers had power outages. 
 
Data Preprocessing 
 
The power outage data was given as one CSV file, so the data for each city was extracted individually. For the 
model to be able to classify the power outages, an outage percent was calculated by dividing the total number 
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of hours customers were out of power by the total number of hours tracked. After the outage percent was com-
puted for each day, the datasets for both power outages and weather were combined and aligned by the dates. 
To measure the impact of the seasons, a new data value was added, grouping every 3 months as a season, 
starting with December, January and February as Winter. As season data is categorical, a process known as one 
hot encoding was used on that data. One hot encoding creates multiple individual columns for each category of 
the categorical data. Then, the category that the data belongs to is assigned a value of 1, and the other columns 
are set to 0.  

Table 1 shows a sample excerpt of the aligned input and output data used in the model. Each row 
represents the data for a single day. Columns Temp through Season represent the input data of climate factors. 
Columns Customers Tracked through Hours Tracked Total represent the power outage data. The Outage Value 
column represents the power outage classification that is used as the output variable for the model. Outage 
Value is the percentage ratio between Hours Out Total and Hours Tracked Total.   
 
Table 1. Example of Combined Dataset with Weather and Outage Information. Data was collected from 2017 
to 2023 from 10 different cities in the West Coast of USA. Season 0 = Winter, Season 1 = Spring, Season 2 = 
Summer, Season 3 = Fall.  
 

Temp 
(°F) 

Humidity 
(%) 

Precip 
(in) 

Wind 
Speed 
(mph) 

Solar 
Radiation 
(W/m2) 

 
Season 

Customers 
Tracked 

Max 
Customers 

Out 
Hours 

Out Total 

Hours 
Tracked 

Total 

Outage 
Value 
(%) 

63.34 48.01 0.000 13.13 195.47 3 5589 2888 8483.21 135043 6.28 

65.44 61.40 0.031 13.06 183.03 3 27138 10102 16703.63 638676 2.62 

63.53 66.34 0.000 11.57 165.07 3 37597 2526 7319.46 902328 0.81 

57.47 65.61 0.018 12.10 126.16 3 38639 7449 10779.74 922656 1.17 

59.41 74.77 0.025 11.01 135.30 3 42637 2755 10083.50 1023287 0.99 

58.13 73.27 0.111 10.10 110.63 3 42637 1753 7347.55 1023287 0.72 

59.83 73.26 0.027 11.36 114.93 3 42637 9560 11968.81 1023287 1.17 

53.03 57.34 0.000 11.01 123.46 0 42637 6575 17918.28 1023287 1.75 

51.19 55.47 0.000 6.53 122.30 0 42637 2741 10634.02 1023287 1.04 

 
Figure 1 shows two examples of scatterplots between input variables (Temperature and Humidity) and 

the outage value.  
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Figure 1. Scatterplots between outage percentage and temperature (A) and between outage percentage and 
humidity (B) 
 

During the preprocessing stage, different statistics were computed including the average power outage 
percent, the maximum outage percent, the minimum outage percent, and the percent of the data that had no 
power outages at all. Along with these statistics, a histogram of the data was made, with the outage percent on 
the x-axis and the frequency on the y-axis. This was done for each of the 10 locations independently. 

Since the model would be affected more by input factors that have large numerical values compared 
to those with smaller numerical values, it was imperative to normalize all the data to be in the same range. For 
each of the numerical input parameters, the data was scaled, or normalized, to be a real number between 0 and 
1.  

Another analysis was done by combining the daily data for every 7 consecutive days to update the 
scope to a weekly basis. This was done because the daily outage values were very small. In many cases of 
machine learning models, the model performance was more accurate when such aggregates are used. Such 
aggregation is applicable in this case as the climate factors are correlated within a few days.  
 
Model Creation 
 
The model used in this project was an artificial neural network for binary classification. It was implemented 
using the keras.Sequential Python library. As such, the output data needed to be set as either zero or one. To do 
this, a threshold was set for the outage percent. Anything less than the threshold would be classified as 0 and 
anything above is 1. In other words, a value of 1 would indicate a day with significant power outages. The 
combined input and output dataset was split 70-30 among training and testing data. The model was run on each 
of the 10 locations to study the performance of the model on each location individually.  

The model was configured with one hidden layer with ten nodes. For both the input layer and the 
hidden layer, an activation function of Relu, or Rectified Linear Unit, was used for the nodes (Shaw, 2020). For 
the final output layer, a Sigmoid function was used. The optimizer of ‘Adam’ and the ‘Binary Crossentropy’ 
loss function was used for the model’s learning. 
 
Model Performance Measurements 
 
After training and testing the model on the data, the accuracy, precision, and F1-score, which are different 
metrics to measure the model’s success, were calculated and returned (Bajaj, 2023). 

As another metric of success, an ROC curve was plotted using the false positive rate (how often the 
model classified a non-outage as an outage) and the true positive rate (how often the model classified an outage 
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correctly). Once the curve was plotted, the area under the curve, or the AUC, was calculated. The AUC value 
represents how well the model was able to separate the two classes (Bajaj, 2023). 

Along with these, a confusion matrix was plotted to highlight the classification categories. A confusion 
matrix gives a representation of the model’s successes and errors (Brownlee, 2020). 
 
Sensitivity Analysis 
 
This artificial neural network takes many different input variables. As an experiment to see which climate var-
iables are the most impactful to the power outages, different sensitivity analysis techniques were used. One 
such method used by Hunter et. al (2000) were adding noise to certain input variables to see the impact on the 
accuracy. This was achieved using the numpy.random library, creating a Gaussian noise array, with a mean of 
0 and a standard deviation of a fraction of the input variable’s mean. This noise was added to the input variable, 
and the model was run with different fractions to see the effect of the noise. This was repeated for each input 
variable, such as temperature, humidity, wind speed, precipitation, and solar radiation. Because the season data 
value is categorical, this method of sensitivity analysis was not applied to that variable. Another method of 
sensitivity analysis used by Hunter et. al (2000) was also used for the sensitivity analysis. This approach re-
places all the entries of a specific input variable with the mean of that variable.  

For both methods, the accuracy and other metrics were examined. If the performance decreased sig-
nificantly with the added errors, then that variable on which the sensitivity analysis was used would be important 
to the model. The larger the reduction, the more important the variable would be. 
 

Results 
 
Data Statistics 
 
The statistics of the computed outage percent data for all 10 locations are shown in Table 2. The average, 
maximum, and minimum of the computed power outage value were calculated across the entire time span of 
the data. The Zero Percent column represents how often the location experiences a power outage. A high zero 
percent would represent that there were some outages on a higher number of days.  
 
Table 2. Power Outage Data Statistics from 2017 to 2023 from 10 cities on the West Coast of USA. The statis-
tics were computed using the outage percentage referenced above. 
 

Location Average (%) Maximum (%) Minimum (%) Zero Percent (%) 
Fresno 0.21 33.27 0.0 1.09 

San Francisco 0.53 49.25 0.0 1.42 
San Jose 0.97 63.04 0.0 0.38 

San Diego 0.66 41.78 0.0 2.41 
Los Angeles 0.34 100.0 0.0 82.92 

Tacoma 0.13 97.89 0.0 76.78 
Bellevue 0.23 32.34 0.0 20.70 
Seattle 0.18 100.0 0.0 93.04 

Vancouver 0.12 21.59 0.0 28.54 
Eugene 0.32 100.0 0.0 9.60 
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Model Performance 
 
The model performance based on daily data from all 10 locations are shown in Table 3. The Training Accuracy 
is the accuracy achieved by the model during the Training Phase. The Testing Accuracy, Precision, and Recall 
were computed during the Testing Phase. The F1 Score is computed from the Precision and Recall. The AUC 
value is computed from the ROC curves (example: Figure 2). 
 
Table 3. Model Performance Results using daily data samples. 
 

Location F1 Score 
Testing 

Accuracy 
Training 
Accuracy AUC Precision Recall 

San Francisco 0.6218 0.7343 0.7556 0.5371 0.5392 0.7343 
Fresno 0.8998 0.9324 0.9311 0.6465 0.8694 0.9324 

San Jose 0.588 0.6761 0.6523 0.6322 0.6454 0.6761 
Bellevue 0.9077 0.9378 0.929 0.5485 0.8795 0.9378 
Eugene 0.8681 0.9107 0.9308 0.6071 0.8293 0.9107 
Seattle 0.9703 0.9801 0.9759 0.6413 0.9607 0.9801 

Vancouver 0.9625 0.9749 0.9655 0.5919 0.9504 0.9749 
Tacoma 0.9878 0.9918 0.9839 0.6959 0.9837 0.9918 

San Diego 0.5474 0.673 0.6732 0.5236 0.6981 0.673 
Los Angeles 0.9227 0.948 0.95 0.488 0.8988 0.948 

 
The model performance based on combined weekly data from all 10 locations are shown in Table 4, 

using the same metrics as Table 3.  
 
Table 4. Model Performance Results using weekly data samples. The samples are averaged from 7 days to 
represent the weekly aggregate.  
 

Location F1 Score 
Testing 

Accuracy 
Training 
Accuracy AUC precision recall 

San Francisco 0.6289 0.6703 0.6698 0.5422 0.619 0.6703 

Fresno 0.9022 0.9341 0.9009 0.5647 0.8725 0.9341 

San Jose 0.5316 0.5275 0.6604 0.5682 0.5388 0.5275 

Bellevue 0.8989 0.9318 0.9163 0.4207 0.8683 0.9318 

Eugene 0.767 0.84 0.8793 0.4167 0.7056 0.84 

Seattle 0.9657 0.977 0.9403 0.6118 0.9546 0.977 

Vancouver 0.9653 0.9767 0.9192 0.6012 0.954 0.9767 

Tacoma 0.983 0.9886 0.9754 0.9655 0.9774 0.9886 

San Diego 0.5357 0.5385 0.5613 0.4878 0.5335 0.5385 

Los Angeles 0.8384 0.8901 0.8815 0.4296 0.7923 0.8901 
 
 The ROC graphs were created for all 10 locations. The graphs of Fresno and Los Angeles are shown 
in Figure 2 and Figure 3 as representative examples.  
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Figure 2. ROC Curve of Fresno from the model trained with daily data samples.  
 

 
 
Figure 3. ROC Curve of Los Angeles from the model trained with daily data samples 
 
 The Confusion Matrix plots were created for all 10 locations. The plots of Fresno and Los Angeles are 
shown in Figure 4 and Figure 5 as representative examples.  
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Figure 4. Confusion Matrix of Fresno (Daily) 
 

 
 
Figure 5. Confusion Matrix Plot for Los Angeles (Daily) 
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Discussion 
 
Data Statistics 
 
All of the average values for the locations are significantly small, less than 1% (Table 2). This indicates that 
power outages are usually impacting a relatively small number of customers compared to the location’s popu-
lation. The maximum values indicate that for some locations such as Los Angeles, Eugene, and Seattle, there 
was at least one day when all the customers experienced a power outage. Locations like Seattle, Los Angeles, 
and Tacoma experienced any kind of outage for relatively fewer days. Comparatively, San Jose experienced 
outages for most of the days within the dataset’s time frame. But the average and the max are not significantly 
higher than the other cities. This indicated that even though San Jose experienced outages more frequently, it 
affected a smaller section of the city. This may be because San Jose is a large city with a wide variation of 
power grids. 
 
Model Performance 
 
Model performance metrics are shown in Table 3. The primary metric is the accuracy, which is high for most 
of the locations. But accuracy is not always a good indicator of predictive behavior, especially if the dataset is 
not evenly distributed. The F1 Score, which represents a combined metric of precision and recall, is high for 
most of the locations, but the AUC scores were low, closer to 0.5, which indicates high randomness in the 
classification results (Figure 1, Figure 2). The results from weekly aggregation of the data in Table 4 showed 
similar results. This indicates that the aggregation did not affect the model performance.  
 To investigate the low AUC values, a confusion matrix was created and analyzed. The confusion ma-
trices indicate that the model was classifying all test samples as not a power outage (Figure 4, Figure 5). This 
is because the dataset was highly skewed, with a predominance of no outages. In some areas there were 602 
days with no outages, compared to only 33 days with outages (Figure 4). The model ended up classifying all 
the outage days as no outages. But the relatively fewer number of outage days still resulted in a higher perfor-
mance metric.  
 
Summary 
 
The results obtained in this study indicate that the artificial neural network model was not able to perform well 
in the targeted classification task. One likely cause of this is the highly skewed datasets. ANNs usually perform 
better on well distributed datasets (Brownlee, 2020). Another possibility is that power grids in these locations 
from the West Coast of the United States were already well protected from weather related elements. It may be 
that the outages observed in the data set were due to non-weather-related factors, but this needs to be confirmed 
through further analysis of the data.   

The sensitivity analysis was not done as the models did not show good correlations between inputs 
and output. 
 

Conclusion 
 
In this research project, a deep neural network-based model was developed to predict the possibility of a sig-
nificant power outage based on climate factors. The performance metrics of the models indicate that the ANN 
model is not able to accurately predict the occurrence of a power outage based on weather factors in these 
locations. One primary reason could be that the datasets for these locations were highly skewed. Also, these 
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locations could already have fortified power grids against general climate factors. Future works should include 
repeating the experiment with different locations from other regions of the United States as well as the world 
where there is significant impact of non-extreme climate factors on the power grid reliability. The model could 
be expanded to consider other environmental factors, either natural or man-made, as input variables. 

Another future exploration would be to consider alternate machine learning models. Models such as 
Random Forest and SVMs have been successfully used in other classification problems.  
 

Limitations 
 
The model training was done with data from 10 locations on the West Coast of the USA. The locations were 
limited due to accessibility of power outage data. Having more locations would allow for a larger sample size, 
which would benefit the development of the model. Another limitation is that, due to time and computing re-
sources constraints, only an Artificial Neural Network model was used in this study. Other modeling techniques 
can be used to see if they provide a better performance in predictions.   
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