
AntiBloom: A Novel Deep Learning-Powered 
Device to Predict Harmful Algal Blooms 
 
Neel Bhattacharyya1, Jay Wankhede1 and Zachary Kingman# 
 
1Poolesville Highschool, USA 
#Advisor 
 
ABSTRACT 
 
Harmful Algal Blooms (HABs) affect biosystems, leading to Unusual Marine Mortality Events (UMEs). Pre-
dicting algal bloom events can be costly and challenging. In this study, we developed a method for predicting 
algal blooms using an Artificial Neural Network (ANN) with Keras and Sklearn. We also designed a buoy that 
can collect real-time data on wind speed, UV index, pH, water temperature, and salinity to calculate real-time 
predictions of algal bloom. With a low cost of $150, the buoy was equipped with imaging and notification 
capabilities using Amazon Web Services (AWS), enabling relevant parties to be informed of harmful condi-
tions. The ANN was trained using data from the National Centers for Environmental Information, which pro-
vided water quality data sets for Lake Erie. The model demonstrated 96.34% accuracy in predicting elevated 
levels of chlorophyll-a, a common marker for detecting algae. The buoy and its algorithm significantly improve 
over current methods of detecting elevated chlorophyll-a levels, affirming their potential to be mass-produced 
and usable by local authorities. 
 

Introduction 
 
Algal blooms are an overgrowth of aquatic organisms that occur on the surface of lakes and other bodies of 
water in a short period of time. These blooms contain many species that can be harmful for various reasons, 
e.g., the production of toxins, hypoxia, and others. It has come to a point where this problem is widespread and 
growing and has negative consequences for aquatic ecosystems, human health, and the economy [1-4]. Algal 
blooms are most commonly attributed to an excess of nutrients (particularly phosphorus and nitrogen) and 
elevated temperatures [5, 6]. Other favorable conditions for algal blooms may include low wind speeds and 
prolonged storage of water [7-9]. The leading causes of water body eutrophication include runoff from agricul-
tural fertilizer, livestock waste, sewage, and industrial waste products from surrounding activity [10].  

As algae die and decompose, bacteria consume the remaining oxygen in the water, leading to hypoxic 
conditions that create "dead zones'' where marine life cannot survive. The most detrimental algal blooms are 
caused by brown tide species (Aureococcus anophagefferens and Aureoumbra lagunensis), cyanobacteria, and 
dinoflagellates [11]. The algal blooms caused by cyanobacteria are prevalent and can have devastating impacts 
on aquatic life due to the release of cyanotoxins especially in fresh water. The brevetoxins produced by dino-
flagellate Karenia brevis, one of the most common types of harmful algae blooms in the United States, can 
harm human and animal health, leading to various health issues and a full-blown water crisis [12]. Due to these 
issues, large lakes such as the Great Lakes have now been designated impaired under the Clean Water Act [13]. 
The incredible economic impacts of algal blooms are apparent all over the world as well. In the US, 4.6 billion 
dollars have been used for eutrophication-related remedies [14, 15]. Northeast Asia, Japan, and Korea have 
dealt with severe economic problems as well [16]. Previous literature analyzed the correlation between HABs 
with elevated temperature, total phosphorus, and nutrients [5,6,17-20]. Additionally, elevated levels of chloro-
phyll-a have an extremely high correlation with algal blooms, essentially making it an indicator of an oncoming 
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algal bloom which takes a minimum of five days to fully form [21]. Therefore, consistently predicting high 
levels of chlorophyll-a levels over some period of time would confirm the possibility of an incoming algal 
bloom. The chlorophyll-a concentrations proposed by the World Health Organization (WHO) are for low (< 10 
µg/L), moderate (between 10 and 50 µg/L, high (between 50 and 5000 µg/L), and very high risk (>5000 µg/L) 
[22]. Yuan et al. demonstrated the strongest association of microcystin (one of the common toxins) with total 
nitrogen and chlorophyll-a [23]. These findings suggest that the concentration of chlorophyll-a could also be 
useful in tracking the new US Environmental Protection Agency (USEPA) microcystin health advisory levels 
for drinking water [24-26].  

Machine learning has tremendous potential for predicting environmental disasters. With the help of 
large datasets, machine learning algorithms can accurately predict certain events based on parameters that have 
an effect. New research has shown that ANNs are highly effective for environmental event prediction [27]. This 
has prompted others to look at using machine learning to predict other natural disasters, such as tornadoes and 
wildfires [28, 29]. ANNs have also been proven to effectively combat nonlinearity and have been accurately 
used for ecological modeling in past research [29] Previous studies have also used machine learning to predict 
algal blooms but have done so with parameters such as dissolved oxygen and satellite data [30]. These are 
attributes that are very expensive to use and are not feasible data points to collect for smaller ponds and lakes, 
which there are a lot more of. There is proper precedent and past research to support the possibility of using an 
ANN to predict elevated levels of chlorophyll-a effectively. To accurately predict the chlorophyll-a level for a 
body of water, a buoy can be used with sensors.  Medina et al. developed a low-cost ($658.79) buoy for remote 
water quality monitoring in fish farming [31]. They measure temperature, pH, and dissolved oxygen, transmit-
ting the information locally through a low-power wide-area network protocol. Inspired by their results, we have 
developed the current, even lower-cost buoy ($150) with the capability of predicting another important param-
eter, chlorophyll-a.  
 

Materials and Methods 
 
Development of Deep Learning Algorithm 
 
The novel AntiBloom algorithm developed through an ANN using the Keras and Sklearn modules in Python 
was crafted to accurately predict chlorophyll-a levels. The hidden layers in an ANN are responsible for feature 
extraction, which identifies patterns in the input data. Each neuron in a hidden layer applies a non-linear acti-
vation function to the weighted sum of its inputs, allowing the network to learn complex relationships between 
the input features and the output variable. Our algorithm consisted of five attributes for each of the sensor 
readings, one hidden layer with four (number of attributes minus one) neurons, and an output layer with one 
neuron for the concentration of chlorophyll-a (Figure 1).  
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Figure 1. Representation of the Artificial Neural Network. Circles (attributes) represent neurons, and connec-
tions represent weights. 
 

The values for each of the hidden layers and output layers are computed with the following equations. 
 

 

 
 

Where wi,j denotes the weight value of the connection between neurons ni and nj, and bi denotes a bias 
to shift the output as needed. The activation function, f(x), utilized to introduce non-linearity was the Rectified 
Linear Unit (ReLU) defined by 
 

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) 
 

Essentially, each neuron in one layer is an activation function applied to the sum of a weighted sum of 
each neuron in the preceding layer and a bias, with the first layer being the normalized attributes. This compu-
tation was done using Keras methods. 

After the chlorophyll value was calculated (n10), an inverse mapping was applied to remap the values 
to the chlorophyll-a concentration in µg/L. This was done through the utilization of methods in the Keras library 
as well. 
 
Training 
 
The training dataset was sourced from the National Centers for Environmental Information (NCEI) granule 
geoportal and the United States Geological Survey (USGS) water sample datasets and from NOAA. NCEI and 
USGS provided water quality data and NOAA provided UV index data. Data from the years 2014-2018 were 
used. [33,34] The UV index features had to be added through a Python program. The training dataset has 19596 
data entries in total.  The values in the dataset recorded for chlorophyll-a were shifted back by 5 days as imme-
diate conditions do not accurately represent the immediate growth of algae [21]. In this way, our device is able 
to predict dangerous conditions in advance, and this method is valid for these attributes due to the high specific 
heat and physical properties of water in retaining conditions for long periods of time. After this shift, the data 
was normalized in code by computing the z score for each data point (input - mean)/sqrt(variance). In this way, 
attributes with different ranges would not introduce unnecessary bias. The AntiBloom algorithm was optimized 
with gradient descent to minimize the cost function during neural network training. The cost function is com-
puted as the square of the difference between the actual and predicted values. The standard training algorithm 
of backpropagation calculus is used to compute the gradient of the cost function to optimize each weight and 
bias (wi,j, bi) for cost minimization in the network. The training algorithm was executed using the Keras Python 
library. 
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Buoy Fabrication 
 
A buoy was fabricated using a 3D printer and fiberglass. Half of the buoy developed with an original CAD 
design was printed in Polylactic Acid (PLA) and measured 5 in x 5 in x 3 in. Holes were drilled in the print to 
ensure that it could be removed from the fiberglass easily. Resin mixed with hardener was laid on two layers of 
fiberglass and cured overnight. The same procedure was repeated with the other half. Once the two halves were 
cured, the fiberglass was sanded down, and environmentally friendly acrylic latex paint was applied. A hole 
was drilled for the anemometer, Light emitting diode (LED) indicator, and UV wiring, which were connected 
to an Arduino and placed at the top. All circuitry was connected and tested for accuracy. An ArduCam was 
covered in epoxy to make it waterproof. A hole was drilled at the top for the ArduCam wire to be connected to 
the Arduino, and the ArduCam was placed at the top. All other wiring, including the Arduino and the Raspberry 
Pi 4, was placed inside the casing. Three holes were drilled on the bottom for each probe sensor (water temper-
ature, pH, and salinity), and waterproof epoxy was added to protect the electronics inside the buoy. In order for 
the waterproofed buoy to remain upright, a container with a weight was attached to the bottom of the device 
with waterproof epoxy. At the end, a waterproof Quick Response (QR) code was added to the buoy facing any 
walking-by pedestrians. By appealing to intrinsic human curiosity, many will be intrigued by the QR code in 
the water and want to find out more. This link will direct them to a website we created that informs the general 
public on the purpose of our buoy, the harmful effects of algal blooms and water pollution, and what they 
individually can do to help the general public. As the goal of this buoy is to be utilized in local lakes and ponds 
across the globe, it will effectively create awareness and inspire the general public, hopefully leading to long-
term improvement.  
 

 
 
Figure 2. The AntiBloom device 
 
Data Collection and AntiBloom Architecture 
 
The buoy was placed in the desired body of water (Figure 2) to read data. The algorithm was run on the collected 
data to predict chlorophyll-a levels. If the chlorophyll-a levels were above 25μg/L, the ArduCam was signaled 
to take a picture, upload it to an AWS S3 bucket, and return the image address to the Raspberry Pi. The threshold 
of 25 μg/L was chosen as this falls in the range of moderate to high risk of algal bloom possibility as stated in 
literature [23]. All JavaScript Object Notation (JSON) files were uploaded to the AWS S3 Bucket. AWS 
Lambda was utilized to check each JSON file for an image address. If an image address was present, AWS SNS 
was used to send a notification of information regarding the JSON file to a desired party to request immediate 
action to prevent an incoming algal bloom. For testing purposes, a personal phone number was used as the 
selected party to receive the notification. This is to replicate the process of alerting local authorities, who, when 
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informed, can therefore take immediate action to impede the further growth of algal blooms (Figure 3). This 
will protect the marine life present in the water as well as local residents. 
 

 
 
Figure 3. Model of the AntiBloom Architecture 
 
Evaluating Metrics 
 
K-fold cross-validation was used to determine the average accuracy of the algorithm through implementation 
with the Python SKlearn library. A k-value of 10 is used to ensure representative samples for reliable evaluation. 
The data is split into 10 subsets, where each subset is set at the validation set over 10 iterations. The algorithm 
is trained on all other subsets and checked against the validation set. The average accuracy of all 10 iterations 
is the final recorded accuracy of the algorithm. If the algorithm predicts an elevated level of chlorophyll and 
the data confirm that the level of chlorophyll is above 25μL/g the next day, it is deemed a correct prediction 
and a notification is sent. The algorithm predicts 5 days into the future as conditions correlate with algal growth 
after 5 days. We also calculated the final contribution weightings of each attribute to validate against the corre-
lation heat map of the data set for chlorophyll-a. This process is repeated five times, running the program a total 
of 50 times, where the average percent contribution for each attribute is recorded as well. 
 

Results 
 
The data that was utilized to train the ANN model was taken from the NCEI granule portal and USGS water 
quality samples for Lake Erie. Through the use of a Python program, wind speed and UV index data were added 
from the OpenWeather API. 

The InterQuartile Range (IQR), (Figure 4), represented by the height of the box, is 0.14%. The whisk-
ers above and below the box represent the range of distributions. Any value less than Q1 - (1.5 · IQR) or greater 
than Q3 + (1.5 · IQR) was to be recorded as a point representing an outlier.  The median accuracy is 96.34%. 
The range between the most accurate run and the least accurate run is 2.02%. The average accuracy is 96.1%.  
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Figure 4. Displays a box plot of the distribution of percent accuracy after running the algorithm for 5 epochs 
utilizing k-fold cross-validation with a k-value of 10.  
 

The correlation between the attributes and the target variable through the use of a heat map was deter-
mined (Figure 5). The radius and color of a circle are correlated to the degree of correlation of that attribute to 
Chlorophyll-a. UV has a Pearson's Correlation Coefficient of 0.46, wind speed has that of  -0.01, water temper-
ature has that of 0.04, pH has that of 0.14, and salinity has that of 0.26. 
 

 
 
Figure 5. Heatmap of data created with Sweet Viz displaying the correlation for each attribute with Chlorophyll 
-a levels. The blue bar at the bottom shows the scale of the correlation (1 to 0). 
 

In order to better understand the importance of each of our sensors in chlorophyll-a prediction, the 
percent contribution of each attribute was calculated (Figure 6). The x-axis shows the five trials conducted. The 
y-axis sums up to 100%, with each block in the stack proportional to the percentage that contributed to the final 
value. Over the 5 trials, the UV had an average contribution of 47.252%, salinity had 31.686%, pH had 
15.112%, water temperature had 5.45%, and wind speed had 0.5%. 
 

Discussion 
 
ANN Model Effectiveness 
 
The novel ANN model proved to have a median 96.34% accuracy in predicting chlorophyll-a concentration.  
The negligible range between the highest and lowest accuracy percentages of 2.02% proves the reliability and 
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consistency of the algorithm when predicting elevated levels of chlorophyll-a (Figure 4). In a similar study 
conducted by the members of the School of Electrical Engineering and Computer Science, it was found that the 
accuracy of their AI model was 91.0% when predicting chlorophyll-a levels for precision, not for classification 
[36]. The current results indicate that our device has a comparable level of accuracy in identifying dangerous 
conditions even with the use of less expensive sensors. Upon further analysis of the accuracy, it was observed 
that the model was making accurate predictions for both above and below the threshold value (25 μg/L). This 
high accuracy could partly be attributed to a relatively low sample size due to the limitations of the Raspberry 
Pi in regard to processing large amounts of data. This could mean the possibility of a Type 1 or Type 2 error. 
However, the standard of scaling the degrees of freedom or the number of parameters by 10 to estimate the 
minimum number of samples needed for a machine learning model was used. Therefore, we treat this accuracy 
with minimal concern for its validity.  
 
Attribute Significance Analysis 
 
The study demonstrates that a correlation exists between the attributes and levels of chlorophyll-a as from those 
alone, a high accuracy was obtained. This can be further corroborated by the correlation observed during both 
prior statistical analyses, with the UV index having a Pearson’s correlation coefficient of 0.46, salinity having 
a coefficient of 0.26, and pH having a correlation of 0.14, and during the analysis of the percent contribution of 
the attributes to the final outcome, which displayed an order of significance similar to that of the magnitude of 
the Pearson's Correlation Coefficient (Figure 5 and Figure 6). The correlation here indicates that a focus on the 
more significant attributes, UV, pH, and salinity, can be considered in future research on algal bloom causation 
and prediction. 
 

Conclusion 
 
Overall, the attempt to create a low-cost device that is able to effectively predict algal blooms proved successful. 
The algorithm proved to be 96.34% accurate in chlorophyll-a prediction even while using low-cost sensors. The 
ability of the sensors was found to be highly accurate providing sufficient data to make precise predictions. 
100% of the data was transferred to the AWS bucket, which also successfully sent a notification for any wor-
rying predictions. Though strong, every design can always be improved. A problem acknowledged is the battery 
life of the Raspberry Pi, as a 9V battery was used. A possible way to do this is by utilizing a DFRobot Solar 
Power Manager to power the Arduino. It is a low-cost option that is compatible with non-lithium batteries, 
making it an eco-friendly option to keep the buoy in water for prolonged periods of time. In addition to this, a 
method called pruning can be utilized to remove unnecessary neurons from the AntiBlooms algorithm, further 
optimizing its performance. However, the combination of high accuracy, low cost, and communication effec-
tiveness makes this buoy a perfect candidate for mass production and water quality monitoring in all bodies of 
water.  

The future of AntiBloom lies in algal bloom prevention in local ponds and lakes across the globe. 
Through the use of its QR code, its message of better treatment of our local bodies of water is effectively spread. 
As for its next steps, research for AntiBloom does not need to be limited to just chlorophyll-a predictions. Due 
to its robustness and flexibility, AntiBloom has the capability to house, collect, and send data using other sensors 
for analysis. This could be used to detect nanoplastics and various toxic chemicals in local bodies of water when 
appropriate sensors are installed. With additions such as these, our AntiBloom device can be transformed into 
an optimal tool for water analysis, data collection, and notification. 
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