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ABSTRACT 
 
Cardiovascular Disease (CVD) is a prevalent, incurable condition affecting the heart and blood vessels. Due to 
its significant impact on mortality in the United States, there is a pressing need for enhanced risk stratification 
methods. Coronary Artery Calcium Score (CACS), reliant on CT scans,  is most commonly employed as a risk 
stratification method but suffers from limitations, including accessibility and early detection challenges. To 
address the problem, this research study proposes a representation learning-based CVD diagnosis framework 
utilizing X-ray images, offering expedited and earlier detection, as well as improved accessibility. This system 
comprises two distinct stages: representation learning to extract CVD-related features and transfer learning to 
train a CVD classifier. Representation learning enhances the quality of extracted features, thereby leading to 
more precise results in the subsequent CVD diagnosis network. Comprehensive experiments and training vali-
date the efficacy of the proposed method, demonstrating its superiority over the existing methods. These prom-
ising results suggest the potential utility of X-rays as a valuable biomarker for diagnosing CVD disease.  
 

Introduction 
 
Problem Definition 
 
Cardiovascular disease (CVD) is an incurable cardiac disorder typically associated with atherosclerosis and an 
elevated risk of blood clots. It has emerged as the leading cause of mortality among both men and women in 
the United States, primarily due to sedentary lifestyles and unhealthy dietary habits that lead to high blood 
pressure, high cholesterol, and diabetes, which in turn increases the risk of CVD. Given the escalating preva-
lence of CVD, implementation of effective CVD diagnosis methods has become crucial. Early detection of 
CVD holds a particular significance since it helps doctors select appropriate treatment at an early stage and 
helps to prevent further deterioration of the victim’s health. While the Coronary Artery Calcium Score (CACS), 
a CT scan-based risk stratification assessing calcium in the atherosclerotic plaques in the coronary arteries, has 
conventionally served as a widely adopted risk stratification system, its reliance on costly CT scans limits public 
accessibility. Conversely, using machine learning can increase the accuracy of detection, contribute to early 
diagnosis, and improve accessibility by using radiology.  
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Previous Method 
 
There are previous cases where scientists have facilitated AI for CVD risk stratification systems. Wong et al. 
proposed a risk stratification system using a deep-learning algorithm on retinal photography that predicted sys-
temic biomarkers for CVD (Wong et al. 2022). Their research’s primary aim was to make associations between 
systemic disease with unobservable retinal features. The research developed 47 deep-learning algorithms to 
estimate 47 systemic biomarkers.  

Rim et al. proposed a risk stratification system using a deep-learning algorithm on retinal photographs 
that predicted systemic biomarkers for CVD (Rim et al. 2021). Their research aims to make associations be-
tween systemic disease with unobservable retinal features. They provided a more accessible CVD diagnosis 
method by using retinal photographs instead of CT scans. Rim et al. also proposed a simplified cardiovascular 
disease risk stratification system, which is based on deep-learning-predicted CAC from retinal photographs 
(Rim et al. 2020). This utilizes the risk stratification system they developed previously and develops it further 
to a model that predicts the probability of the presence of CAC based on retinal photographs. Another group of 
scientists proposed a CVD diagnosis method using retinal photography. In 2019, De Vos et al. proposed a 
method that can perform CACS directly in multiple types of CT by using an unsupervised deep learning atlas-
registration method. Their method detected CACS by registering input CT to CT atlas image (De Vos et al. 
2019).   
 
Proposed Method 
 
Improving on the previous methods, I propose a new method CardioXNet, an AI-powered biomarker for CVD 
diagnosis using X-ray images, to rectify the inaccessibility and the accuracy of previous CVD diagnosis meth-
ods. The proposed method will input X-ray images and output the predicted severity of CVD after CACS anal-
ysis. To develop this model, I propose the feature-swapping mechanism that disentangles CVD-related features 
from the input X-ray image. Previously, the methods proposed incorporated supervised learning. However, 
when non-diverse data was provided, the method caused bias, failing to detect the target features. In other 
words, features extracted from the input images were entangled, which caused the trained network to be biased 
on the dataset. Compared to the previous method, the proposed feature-swapping mechanism leverages the 
limited data. That is, the feature-swapping mechanism disentangles the entangled feature map and identifies the 
relevant feature. 
 

Related Work 
 
Cardiovascular Disease 
 
Cardiovascular Disease(CVD) is a general term for fatal heart disease, often associated with atherosclerosis. 
Atherosclerosis is a term used to describe a condition that develops when plaque builds up in the walls of the 
arteries. This plaque narrows the arteries, making it harder for blood flow, and imposes a high risk of heart 
attack on the victim. CVD includes conditions such as coronary artery disease, heart failure, stroke, and periph-
eral artery disease, among others. These conditions often arise due to a combination of genetic, environmental, 
and lifestyle factors, making them complex and multifactorial.  

Traditionally, diagnosis of CVD is possible after a certain amount of time when the presence of the 
disease is obvious. Most typically, Coronary Artery Calcium Scoring(CACS), which analyzes the calcium de-
posits in the plaque in the arteries using special Computed Tomography (CT) scans, is used to diagnose CVD. 
Once the scanner takes multiple pictures of the heart, it is combined to reveal the calcium deposits that are 
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represented as white clots (Rim et al. 2021). Seen in Figure 1. are calcium plaques represented as white packs, 
indicated by the arrows. Once identified, the predefined software logic quantifies a score based on the calcifi-
cation. Although accurate, this method is inaccessible to the public and fails to early diagnose CVD. As a result, 
there has been a growing interest in leveraging the power of artificial intelligence to enhance the detection, 
early diagnosis, and prediction of CVD.  
 

 
 
Figure 1. CT Scans of Calcium Plaques 
 

In this research, I propose an AI-powered biomarker that diagnoses CVD for early diagnosis. Further 
details on the system will be explained in Chapter 3. 
 
X-Ray Image 
 
X-ray images are radiographs that are capable of creating an image of dense tissues and structures inside the 
human body using X-rays. X-ray imaging can be accessed commonly in many hospitals and therefore has low 
cost unlike CT scanned images, which are inaccessible and expensive. Recent advancements in artificial intel-
ligence, particularly in the field of deep learning, have shown promising results in improving the accuracy and 
efficiency of cardiovascular disease detection from medical images. Deep learning models can be trained on 
extensive medical image samples, incorporating thousands of X-ray images annotated with corresponding clin-
ical information which is CACS calculated by the predefined logics. Matsumoto et al. (Matsumoto et al. 2020) 
proposed a deep learning algorithm that diagnosed heart failures using X-ray images. They successfully rela-
beled 260 normal and 378 heart failure images and obtained an 82% accuracy rate. Their method tends to suffer 
from the overfitting problem and yields unsatisfactory results primarily due to the limited size of their dataset.  

In this research paper, I aim to leverage and expand upon machine learning techniques to improve the 
accuracy of CVD detection. I plan to utilize a large-scale dataset, including external validation. The detailed 
description of the proposed approach will be explained in Chapter 3.  
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Image Classification 
 
Image classification refers to a computer vision task involving inputting images and categorizing them into a 
set of categories as shown in Figure 3. It is often used to develop an automated program that analyzes the visual 
images that have been inputted and then assigns them into corresponding categories. This process is typically 
implemented by using Linear Classifiers(LN), Neural Networks (NN), and Convolutional Neural Networks 
(CNN).  
 

 
 
Figure 2. An Example of Image Classification 
 

Among them all, CNN shows comparable performance in many computer vision tasks. Unlike other 
systems, CNNs excel in capturing intricate patterns and hierarchical representations from images, enabling them 
to learn complex features effectively. Prominently applied CNNs include AlexNet (Krizhevsky et al. 2012), 
VGGNet (Simonyan et al. 2014), and ResNet (He et al. 2016).  

These have numerous applications in the medical field due to their efficiency and high accuracy. Doc-
tors would input the X-ray, CT, and MRI images of their patients to a certain image classification system and 
it will output whether the disease being identified is present in the patient or not. For instance, retinal photo-
graphs are inputted into the classification system to diagnose diabetes, and MRI scans are inputted to detect the 
presence of Alzheimer’s disease. In this research, I approach the CVD diagnosis system as an image classifica-
tion problem, where the goal is to categorize x-ray images into specific ranges of CACS.  
 

Proposed Method 
 

 
 
(a) X-ray Representation Learning 
 

Volume 13 Issue 1 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 4



 
 
(b) Transfer Learning (cardiovascular disease diagnosis module) 
 
Figure 3. The Architecture of the Proposed Cardiovascular Disease Diagnosis System 
 
In this chapter, a comprehensive explanation of the proposed framework will be presented, including the design 
of the convolutional neural network and the medical rationale behind it. The proposed framework consists of 
two stages: the first stage focuses on representation learning to disentangle CVD-related features, while the 
second stage involves transfer learning to train a CVD classifier. Representation learning serves the purpose of 
disentangling the CVD-related features from the input X-ray image and transfer learning is used to output spe-
cific categories of the inputted image. 
 
Representation Learning for CVD-related Features  
 
This process serves the purpose of disentangling CVD-related features from a feature map. In representation 
learning, two CNNs are used to process images showing a low CACS radiology image and a high CACS radi-
ology image to output a high CACS radiology image and a low CACS radiology image correspondingly.  

Each image is inputted to the encoder, which will produce a feature map. The CVD-related feature is 
disentangled and inputted into each other’s decoder using a feature-swapping mechanism. For instance, if the 
images inputted were 100 and 300, the CVD-related feature of 100 is processed through the 300 decoder. Once 
processed, the CNN with low CACS input outputs a high CACS radiology image, and the CNN with high 
CACS input outputs a low CACS radiology image. 

To train the proposed autoencoder architecture, I employ the L1 loss function, denoted as Equation 1. 
Equation 1: L1 Loss Function: 

 

 
 

Here, X and Y denote the width and height of the input image while I(x,y) represents the pixel intensity 
at the coordinates (x,y). The loss function measures the average absolute difference between a reconstructed X-
ray image and its original image. The best-case scenario for the L1 loss function is when the reconstructed 
image matches its original image perfectly, resulting in an L1 loss of zero.  
 
Transfer Learning (Fine-Tuning for CVD Classification) 
 
The main goal of this stage is to output a category for the input radiology image. In transfer learning, a pre-
trained encoder of an autoencoder is used for fine-tuning CVD classification.  
 X-ray image of a patient is inputted into the pre-trained encoder, which produces a feature map. CVD-
related features are disentangled and processed through the neural network, outputting a category assigned by 
CACS analysis.  
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 To train the proposed CVD diagnosis network, I employed the cross-entropy loss function, denoted as 
Equation 2. 

Equation 2: Cross-Entropy Loss Function: 
 

 
 

Here, P denotes the probability distribution corresponding to the ground truth of the input image. The 
cross-entropy loss function evaluates the dissimilarity between the predicted probability assigned to each class 
by the model and the true probabilities associated with those classes. The best-case scenario occurs when the 
predicted probability distribution aligns perfectly with the true probability distribution of class labels, resulting 
in a loss value of zero.  
 

Experimental Results 
 
Dataset 
 
In this chapter, I will provide detailed information about the dataset I used to train the proposed method. The 
dataset consists of X-ray images of 43,962 patients with an average age of 56.8 years. 37.01% of the patients 
are female, 62.99% male as shown in Table 1.  
 
Table 1. Category distribution of the dataset used in this research. 
 

Patients 43,962 
Average Age 56.8 

Female 16,241 (37.01%) 
Male 27,651 (62.99%) 

CACS 0 (Absent) 20,642 (47.03%) 
CACS >0 (Discrete) 11,484 (26.16%) 

CACS >100 (Moderate) 7,149 (16.29%) 
CACS >400 (Accentuated) 4,617 (10.52%) 

 
The X-ray samples are categorized into 4 labels based on their Coronary Artery Calcium Score 

(CACS). The 4 labels are Absent, Discrete, Moderate, and Accentuated. Patients with a CACS of 0 are catego-
rized as Absent, indicating an extremely low possibility of CVD presence. Patients with CACS between 0 and 
100 are categorized as Discrete, showing a low CVD presence. Patients with CACS between 101 and 400 are 
categorized as Moderate, which acknowledges the potential risk of further development of CVD and considers 
its potential for re-categorization into a higher level. Patients with CACS of more than 400 are categorized as 
Accentuated, indicating a high presence of CVD. The proposed method outputs one of these 4 categories for 
the inputted X-ray image.  
 
Experimental Protocol  
 
For the experiment, 5-fold cross-validation is conducted to assess the performance of the proposed method. 
This method divides the dataset into 5 groups, then tests each group and trains the rest. In each of the experi-
ments, the accuracy of the testing group is presented, and ultimately, these accuracies are averaged to present 
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the accuracy of the model. I used standard deviation to prove that the accuracy was stable, meaning that accu-
racies from each experiment were consistent. 
  To assess the performance of the proposed method, I used the 4 most popular evaluation metrics: 
accuracy, precision, recall, and f1-score as shown in Equation 3-6. 

Equation 3: Accuracy: 
 

 
 

Where, TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, 
respectively.  

True positive occurs when the classifier correctly predicts a positive output for an instance, and the 
actual outcome is indeed positive. True negative occurs when the classifier correctly predicts a negative output, 
and it is negative. 

False negative describes a situation where a classifier incorrectly predicts a negative outcome for an 
instance when the actual outcome is positive. False positive describes a situation where a classifier incorrectly 
predicts a positive outcome for an instance when the actual outcome is negative. 

Equation 4: Recall: 

 
 

Recall is used to calculate the proportion of actual positive instances among all the positive samples. 
It evaluates the performance of the classifier in finding positive outcomes. 

Equation 5: Precision: 
 

 
 

Precision evaluates the classifier’s ability to predict the positive outcomes correctly. It represents a 
ratio of the correct positive values to all the instances that the classifier predicted as positive. 

Equation 6: F1-Score: 
 

 
 

F1-score measures the harmonic mean between Precision and Recall. It provides a balanced measure 
of a classifier’s performance by considering both false positives and false negatives.  
 
Comparison 
 
Table 2. Performance comparison. 
 

Model Architecture Accuracy Precision Recall F1-Score 

VGG19 
(Simonyan et al. 2014) 

0.6694 
(± 0.0005) 

0.6192 
(± 0.0007) 

0.6371 
(± 0.0009) 

0.6317 
(± 0.0010) 
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MobileNetV2 
(Sandler et al. 2018) 

0.6855 
(± 0.0007) 

0.6419 
(± 0.0011) 

0.6640 
(± 0.007) 

0.6442 
(± 0.0009) 

Xception 
(Fran et al. 2017) 

0.7245 
(± 0.0011) 

0.6871 
(± 0.0012) 

0.6894 
(± 0.0008) 

0.6941 
(± 0.0014) 

HRNet-w32 
(Wang et al. 2020) 

0.7504 
(± 0.0013) 

0.7310 
(± 0.0009) 

0.7275 
(± 0.0012) 

0.7204 
(± 0.0010) 

DenseNet-121 
(Huang et al. 2017) 

0.7794 
(± 0.0009) 

0.7414 
(± 0.0008) 

0.7705 
(± 0.0011) 

0.7545 
(± 0.0009) 

Resnet-101 
(He et al. 2016) 

0.7884 
(± 0.0010) 

0.7492 
(± 0.0008) 

0.7714 
(± 0.0006) 

0.7628 
(± 0.0004) 

Proposed Method 
(Resnet-101 based) 

0.8372 
(± 0.0007) 

0.7873 
(± 0.0010) 

0.8000 
(± 0.0008) 

0.7924 
(± 0.0009) 

 
Table 2 shows a comparison of the performance of the proposed methods with that of state-of-the-art 

methods. This is conducted to prove the improved performance of the proposed method compared to the previ-
ous methods. I trained each of the model architectures on the same dataset using 5-fold cross-validation and 
used the evaluation metrics to assess their performance. The results showed a clustering effect: networks with 
a similar number of convolutional layers showed similar performance. Shallow networks, such as VGG19 and 
MobileNetV2, had low accuracies of approximately 67-68%. Networks with more layers, Xception and HRNet-
w32, showed comparable performances with a 5% difference at most. Deeper networks, such as DenseNet-121 
and Resnet-101, had higher accuracies than the others but still showed similar performances with almost the 
same accuracy rate. The proposed method showed a significantly higher accuracy and better performance over-
all. I attribute this superiority to the proposed feature-swapping mechanism-based approach. 
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Figure 4. Performance comparison (line graph) 
 

Figure 5 visualizes the performance of each model in a line graph form. It can help our understanding 
of the performance by representing each model in 7 distinct lines. From the graph, it can be observed that the 
results are consistent. 
 
Architecture Replacement 
 
Table 3. Architecture replacement  
 

Model Architecture Accuracy 

baseline proposed 
method 
applied 

VGG19 0.6694 0.7009 
(+3.15%) 

MobileNetV2 0.6855 0.7173 
(+3.18%) 

Xception 0.7245 0.7740 
(+4.95%) 

HRNet-w32 0.7504 0.7953 
(+4.49%) 

DenseNet-121 0.7794 0.8259 
(+4.65%) 

Resnet-101 0.7884 0.8372 
(+4.88%) 

 
In this experiment, I aim to prove that the proposed method shows good performance independent of the model 
architecture. The proposed method was trained using the feature swapping mechanism, and it was applied to 
each model architecture using the transfer learning method. Comparing when the model architectures were 
trained on a baseline model, and when the proposed method was applied, every model improved in its perfor-
mance by 3-4% consistently. This experiment proved that the proposed method could be added independently 
regardless of the model architectures. 
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Figure 5. Accuracy comparison on architecture replacement 
 
Architecture Replacement 
 
Table 3. Architecture replacement  
 

Augmentation Method Accuracy Precision Recall F1-Score 

baseline 0.8372 0.7873 0.8000 0.7924 

Sharpness 0.8541 0.7925 0.8176 0.8072 

Gaussian Noise 0.8045 0.7702 0.7852 0.7675 

Histogram Equalization 0.8245 0.7608 0.7842 0.7904 

CLAHE 0.8186 0.7704 0.7682 0.7753 

 
I modified the images’ sharpness, gaussian noise, histogram equalization, and CLAHE then compared it to the 
baseline performance. Sharpness refers to the degree to which an image appears as well-defined; Gaussian noise 
involves adding random noise that abides by a Gaussian distribution; histogram equalization improves the con-
trast and visibility of details in an image by redistributing the intensity values of the image's pixels; and Con-
trast-Limited Adaptive Histogram Equalization(CLAHE) improves the visibility of a region with varying illu-
mination levels. However, the accuracy only improved when the sharpness of the image was modified.  

By applying sharpness, the details of subtle cardiovascular areas on an X-ray image were emphasized, 
and this improved the overall performance of our trained network. 
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Architecture Replacement 
 

 
 
Figure 6. Confusion matrix of the proposed method 
 
To evaluate the performance of the model, I used the confusion matrix. A confusion matrix is an evaluation 
matrix that visually summarizes correct and incorrect predictions. The representation of the results is easy to 
understand, and it is widely used to evaluate image classification systems. Here, it is noticeable that the ratio of 
diagonal components of the matrix is higher than the rest, implying a high performance for all 4 CACS catego-
ries. This robust result proves the overall high performance of my model.  
 

Conclusion 
 
In this paper, I proposed CardioXNet, an AI-powered biomarker for CVD diagnosis using X-rays, bolstered by 
a feature-swapping mechanism enhancing the performance of image classification. Developed with two Auto-
encoders and transfer learning, CardioXNet consistently outperformed existing state-of-the-art models, improv-
ing their accuracy by an average of 4.22%. Beyond quantitative results, I highlight the method’s applicability 
to enhance accuracy in various image classification systems. The model is also suitable for use at local hospitals, 
enabling patient access to CVD diagnosis without expert intervention. Future works aim to refine and imple-
ment a practical system that can be applied in local hospitals. 
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