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ABSTRACT 
 
Along with the advancement of artificial intelligence, there have been significant improvements in the field of 
whole slide images (WSI). WSI in machine learning is mainly utilized for pathological analysis, consisting of 
diverse tasks such as classification of normal versus tumor patches, segmentation of precise areas of potential 
tumor, or object detection indicating tumor sites. However, training these distinct models for each individual 
task is both time intensive and inefficient. Therefore, there is a high demand for developing a unified learning 
algorithm capable of concurrently handling multiple WSI tasks. To address the aforementioned problem, a 
representation learning based transfer learning method is proposed to process multiple downstream tasks in-
cluding classification, segmentation, and object detection. Synthesizing two stages, the proposed method uti-
lizes the reconstruction of images from representation learning and pretrained parameters from transfer learning 
method to create a more accurate and time-efficient model for analyzing WSI. Overall, the proposed method 
offers a better representation of WSI, which leads to enhanced accuracy in analysis and interpretation. Through 
extensive experiments, I have found that the proposed method outperforms previous state-of-the-art networks 
in various downstream tasks including classification, segmentation, and object detection. I expect the proposed 
method to be applied in real world scenarios with increased practicality and accuracy.  
 

Introduction 
 
Pathology Image 
 
Pathology images provide valuable insights into the cellular and tissue-level changes that occur in the human 
body due to diseases. These images play a crucial role in characterizing a patient’s condition, guiding treatment 
decisions, and forecasting prognosis. Current methods of obtaining pathology images utilize microscopic slides 
analyzed and annotated by pathologists. Pathologists examine diverse annotations that span from providing 
regional diagnoses of broader areas to creating finer segmentations that highlight precise portions within an 
image. However, the method utilizing manual analysis has multiple flaws of being time consuming, labor in-
tensive, and subject to the inter-observer. Alternatively, a machine learning based automated system with su-
perior accuracy and efficiency offers a better prospect in disease detection.  
 
Previous Method 
 
In response to the preceding problem, there has been numerous research studying the use of  computerized 
architecture in detecting tumors in various regions of the human body.  Liu et al. proposed a framework using 
the convolutional neural network to localize and detect tumors in the lymph nodes near the breast (Liu et al. 
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2017). This method tended to produce False Negatives in smaller sized tumors, and were unable to tune hy-
perparameters due to nearly perfect area under curve scores.  

Halicek et al. proposed a digitized architecture in order to predict primary head and neck squamous 
cell carcinoma (SCC) and thyroid carcinoma (Halicek et al. 2019). Their system was limited to detecting a 
certain range of SCC cell size due to the application of down-sampled resolution and required further investi-
gation as the type of trained images was different from the ones that are usually used in clinical settings.  

Wang et al. presented a transfer learning method based on convolutional neural network architecture 
that classifies WSI patches of liver cancer to improve the efficiency of clinical diagnosis (Wang et al. 2021). 
Their network did not provide external validation on real-world clinical datasets, which may result in the vari-
ance of performance in real-world scenarios. 
 
Propose Method 
 
To tackle this challenge, I propose a representation learning based transfer learning method to process multiple 
downstream tasks including classification, segmentation, and object detection for whole slide images (WSI). 
The proposed method includes two stages: an AutoEncoder based representation learning and the transfer learn-
ing method. In the first stage, an image is inputted into an encoder to produce an activation map that compresses 
and extracts some features of the WSI. The activation map then goes through a decoder, which results in a 
reconstructed WSI based on the features of the activation map. The overall goal of the first stage is to extract 
the most important features of the map while carrying the ability to reconstruct the original image with high 
accuracy. I also proposed denoising, which adds image noise to the WSI to robustly extract better features of 
the WSI. The second stage utilizes transfer learning, where the pretrained parameters trained in the first stage 
are brought to efficiently train downstream networks such as classification, segmentation, and object detection.  

There are various features of an WSI that the convolutional neural network extracts from, such as 
regions of possible tumor. In order to improve a training model’s accuracy and performance, it is important for 
the convolutional neural network to extract only the most important features of an image. The first stage utiliz-
ing representation learning ensures that as the model is trained, it will produce an efficient activation map and  
reconstructed image. As opposed to the supervised approach that randomly initializes parameters during the 
learning process, the proposed method utilizes transfer learning with pretrained parameters that will find better 
representations of the WSI. Furthermore, it effectively trains multiple downstream tasks, which speeds up the 
training process with higher accuracy. 

This research paper is structured into the following parts: chapter 2 describes the background 
knowledge of the topic, chapter 3 explains the proposed approach, chapter 4 shows the experimental results of 
the proposed method, and chapter 5 concludes the research paper.  
 

Background Knowledge and Related Work 
 
Whole Slide Image (WSI) 
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Figure 1. Example of an whole slide image (NVIDIA 2023) 
 
Whole slide imaging is the process of obtaining high-resolution digital images at the microscopic level. These 
slides are obtained by extracting tissue samples from various parts of the body, then placing them under a 
microscopic scanner. The produced digital images, called whole slide images (WSI), are in high resolution and 
magnification. Furthermore, they contain multiple features such as being able to enlarge certain regions for a 
better view or adding direct annotations and labels to the image. These aspects allow a time efficient and accu-
rate process of analysis compared to other methods of tissue evaluation.  

WSI is extracted from various parts of the body including different organs, tissues, and skin. They are 
widely utilized in pathological analysis in order to detect possible abnormalities such as tumors. The slides can 
be viewed from multiple magnifications and segmented areas, where various features of focus are interpreted 
in close detail. This feature enables pathologists to examine certain regions of the tissue in depth and thus 
increase the accuracy of tumor detection.  
 
Types of WSI Analysis 
 
WSIs, as described above, are widely utilized in different types of pathological analysis, including classifica-
tion, object detection, and segmentation.  
 

 
 
Figure 2. Example of classification task (Athanazio et al. 2021) 
(a) clear cell carcinoma, (b) wrinkled nuclei and perinuclear halos, (c) cystic spaces with delicate septae, (d) 
clear cell papillary carcinoma, (e) MiT family translocation carcinoma, and (f) biphasic tumor. 
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Classification task of WSI is determining whether a specific feature is contained in the WSI or not, 
usually in distinct categories. With WSI, artificial networks are trained to produce a prediction value from the 
specific categories. An example is determining if a metastatic tissue, which is a tissue that is able to spread to 
different regions of the body, is included in specific regions of the WSI. Figure 2 illustrates different features 
in WSI that are utilized in the task. 
 

 
 
Figure 3. Example of object detection task (Chandradevan et al. 2019) 
 

Object detection is the task of detecting specific features within a WSI. These features are marked in 
colored boxes that emphasize the indication. This task can be applied to a wide variety of WSI, ranging from 
locating specific types of cells to detecting abnormalities within the extracted tissue. Figure 3 features the de-
tection of cell nuclei within a WSI. All of the green boxes represent the network’s predictions.  
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Figure 4.  Example of segmentation task (Kim et al. 2021) 
 

The task of segmentation is to segment or identify specific regions of the WSI. For example, the task 
of obtaining an approximate location for a cell’s nucleus involves segmentation, where a network produces 
WSI highlighting specific segmented areas as its prediction. Figure 4 displays the segmentation task of colo-
rectal cancer, where multiple regions of a single WSI is segmented in order to highlight different parts of the 
slide and predict the probability of tumor.   
 

Proposed Approach 
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(b) 
 
Figure 5.  Overall structure of proposed network (a): Stage 1, (b): Stage 2 
 
In this chapter, I provide a comprehensive review of the proposed method. The proposed network consists of 
two stages: representation learning and transfer learning, as depicted in figure 5. Figure 5 (a) shows an Auto-
Encoder based representation learning, and Figure 5 (b) shows a transfer learning method that processes multi-
ple downstream tasks. Chapter 3.1 and 3.2 describe the architecture and operation of each proposed method 
along with its concept and underlying assumption, and Chapter 3.3 outlines the training procedure and hyperpa-
rameters used in the experiments.  
 
WSI Representation Learning 
 
Figure 5 (a) shows the first stage of the proposed method, which is an AutoEncoder-based  representation 
learning. The ultimate goal of this process is to find a better representation of WSI through the intensive learning 
process.  

The input is a whole slide image (WSI) denoted as I, where I ∈ ℝHW (H and W denote the height and 
width of the input image, respectively). After image noise is applied, the noise added image, denoted as Ĩ, goes 
through an Encoder. The Encoder is shown as E : Ĩ → Z, where Z represents the latent code, or the output of 
the Encoder. The latent code Z is denoted as Z ∈ ℝL (L denotes the dimension of the latent code). Next, the 
latent code goes through a Decoder (D : Z → Î), where Î ∈ ℝHW is the output, or the reconstructed WSI.  

Through representation learning, the network is able to learn to extract the most important features of 
the WSI into the latent code, or activation map. During the learning process, the network can improve in the 
generalization of patterns depicted in the WSI, such as detecting or regionalizing possible tumor locations with 
better accuracy. Furthermore, the latent code is reduced in the size of pixel dimensions, which will reduce the 
learning speed of the network. Overall, the proposed network will have higher accuracy with shortened learning 
speed, therefore increasing the efficiency of diverse tumor detection tasks. 
 
Downstream Task (Transfer Learning) 
 
The second stage of the proposed network, a transfer learning method that is able to train multiple downstream 
tasks, is shown in Figure 5 (b). The stage starts with an input WSI, denoted as I ∈ ℝHW. The input goes through 
the pretrained parameters of the Encoder from the previous stage to produce a latent code. This step is repre-
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sented as E: I → Z, where Z, or the latent code, is able to process multiple downstream tasks including classi-
fication, segmentation, and object detection. The downstream tasks are denoted as Pi, where each downstream 
task of classification, segmentation, and object detection are marked as P0, P1, and P2, respectively. 

Using transfer learning enables the network to gain better representations of the input WSI. As opposed 
to randomly initialized parameters, pretrained parameters from the Encoder reduces the learning speed of the 
network with higher accuracy of processing downstream tasks. 
 
Loss Function 
 
Equation 1: L1 loss function 
 

L1 =  1
𝐻𝐻𝐻𝐻

∑ ⬚𝑊𝑊
𝑥𝑥 ∑ ⬚𝐻𝐻

𝑦𝑦  | I(x, y) - Î(x, y) | 
 

Here, H and W denote the dimensions of the input image, and (x, y) denotes the specific pixel value of 
the original and reconstructed WSI. I and Î denote the original image and reconstructed image respectively.  

The input and output of the first stage of representation learning is a WSI and a reconstructed WSI, 
respectively. An effective way to evaluate the performance of the network would be to compare the difference 
between the two images. The minimal difference between the original and reconstructed WSI would be the 
ultimate objective of the learning process. To calculate the difference, an L1 loss function can be utilized. It 
shows the pixelwise difference between the original and reconstructed image iterated for the whole training 
process, divided by the pixel number of the input in order to produce an average. The loss function measures 
the difference in each corresponding pixels’ intensity.  

Equation 2: Cross entropy loss function 
 

 
 

Here, P denotes the probability produced as the output of the classification task. The second stage of 
the proposed network includes multiple downstream tasks. Among them, the classification task produces a 
probability of a specific category as an output. Therefore, a loss function that is able to well evaluate the accu-
racy of the prediction is needed. The cross entropy loss function puts the output probability through a minus 
natural logarithmic function, which helps better compare the loss of the proposed network in relation to the 
desired score. 

Equation 3: Intersection over Union (IoU) loss function 
 

 
 

Here, Bgt and Bp denote ground truth and prediction of the specific area of the WSI respectively. 
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Figure 6.  Visual representation of IoU 
 

(The green box represents the ground truth, and the red box represents the prediction of the proposed 
network.) 

For other downstream tasks such as object detection and segmentation, a IoU loss function is utilized. 
The main objective of these two tasks are to align with the ground truth region as closely as possible, so that 
the overlapping region between the ground truth and prediction is maximal. The IoU loss function is the area 
of overlap divided by the area of union, which produces a number between 0 to 1. A number closer to 1 implies 
that the prediction has more overlapping regions with the ground truth, and therefore the network has high 
accuracy.  
 

Experimental Results 
 
Dataset 
 
Four main datasets are utilized to train and test the proposed network. The Metastatic Tissue Classification 
dataset is used in the classification of metastatic tissue. This dataset is composed of 327,680 samples extracted 
from lymph node sections, and is used to analyze whether the possible tumor will spread to different parts of 
the body or not. The CryoNuSeg Dataset, composed of tissues of ten different organs of the body, is involved 
in the segmentation of nuclei. The diversification of organs in the dataset reduces the probability of a biased 
training of the network. 

Similar to the CryoNuSeg dataset, the PanNuke dataset is also used in the segmentation of nuclei. 
However, as pathology images are rare and hard to obtain in a large quantity, this dataset is made up of artifi-
cially generated images. These artificial operations produce tissue images from various organs, which contrib-
utes to assessing a model’s performance. Object Detection signet ring cell dataset is utilized in the object de-
tection of signet ring cells (SRC). SRCs are a type of tumor commonly found in the gastric mucosa and intestine 
with a highly poor prognosis, which makes early detection essential. Using this dataset, an output image with 
different colored boxes is generated. Green boxes represent the True Positives, or the correct predictions of the 
network, while the yellow boxes represent the False Negatives, or the areas of tumor the network failed to 
detect.  
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Figure 7. Example images of datasets used by the proposed network 

(The images above are Metastatic Tissue Classification dataset, CryoNuSeg dataset, PanNuke dataset, 
and Object Detection signet ring cell dataset respectively.)  
 
Evaluation Metric 
 
IoU 
For downstream tasks of object detection and segmentation, an Intersection over Union (IoU) evaluation metric 
is utilized.  

Equation 4: Intersection over Union (IoU) 
 

 
 

Here, Bgt and Bp denote ground truth and prediction of the specific area of the WSI respectively. The 
IoU evaluation metric is the area of overlap divided by the area of union, which produces a number between 0 
to 1. A number closer to 1 implies that the prediction has more overlapping regions with the ground truth, and 
therefore has high accuracy.  
 
Dice Coefficient Score 
Equation 5: Dice Coefficient Score 
 

 
 

Here, Bgt and Bp denote the ground truth and prediction of the proposed network respectively. In med-
ical datasets, the area of overlap between the ground truth and prediction, or the True Positive area is the most 
important in the evaluation of a network. In order to emphasize this area of overlap, a Dice Coefficient Score 
is utilized as an evaluation metric. Similar to the IoU, the Dice Coefficient Score is double the area of overlap 
divided by the sum of the areas of ground truth and the network’s prediction. The score will better evaluate the 
accuracy of the network according to its True Positive value.  
 
Confusion Matrix 
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Figure 8. Example of a confusion matrix 
 
For the downstream task of binary classification, a confusion matrix is used. Binary classification is when the 
network produces either a positive or negative result, which is compared to the ground truth values of positive 
or negative. A correctly predicted positive is considered True Positive (TP), a correctly predicted negative is 
considered True Negative (TN), an incorrectly predicted positive is considered False Positive (FP), and an 
incorrectly predicted negative is considered False Negative (FN). These four values reflect the performance of 
the network as probabilities, and make up the confusion matrix.  
 

 

 

 

 
 
Figure 9. Visual representations of accuracy, recall, precision, and F1-score values. (R denotes the recall value 
while P denotes the precision value.) 
 

Based on the confusion matrix, values of accuracy, recall, precision, and F1-score are produced. The 
accuracy is the correct prediction of samples all over all predictions, which indicates a ratio of how many of all 
predictions of the network were correct. Recall is the TP value over the sum of TP and FN. In other words, it is 
the actual correct positive predictions over all positive ground truth values. However, the value may be mis-
leading in some cases as only the true positive values are considered in the equation.  Considered somewhat 
inversely proportional, the precision value is described as TP over the sum of TP and FP. This value captures 
the recall value’s error, and aids in better evaluating the proposed network. The F1-score is calculated as two 
times the product of the recall and precision value all over the sum of the recall and precision value. This is also 
known as the harmonic mean of recall and precision.  
 
ROC Curve 
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Figure 10. Example of an ROC Curve 
 
The ROC Curve utilizes a one hot vector, which is a list of values of either 0 or 1 that represents probability. 
With the data of lists containing numbers, each representing a probability of whether the value is positive or 
negative, a threshold is set. Numbers over the threshold are considered positive with the value of 1, while 
numbers under the threshold are considered negative with the value of 0. A stress test of changing values of the 
threshold is conducted in order to analyze the performance of the classifier. From the test, the change in TP and 
FP rate is evaluated.  

During the evaluation, threshold values are changed in order to assess the change in TP and FP rate. 
Graphical interpretations of these changing rates are shown as the ROC Curve. As the curve gets closer to the 
positive y axis, accuracy increases. A desired network would have a curve with an angle close to 90 degrees, 
adhering to the y axis.  
 
Performance Comparison  
 
Classification 
 
Table 1. Experimental results for accuracy, recall, precision, and F1-score 
 

 Accuracy Recall Precision F1-score 
VGG19 
(Simonyan et al. 2014) 

0.9292 
(±0.0010) 

0.9494 (±0.0016) 0.9142 (±0.0013) 0.9281 (±0.0011) 

EfficientNet-B7 
(Tan et al. 2019) 

0.9329 (±0.0011 0.9532 (±0.0008) 0.9111 (±0.0009) 0.9320 (±0.0008) 

HRNet-40 
(Wang et al. 2020)  

0.9380 
(±0.0009) 

0.9528 (±0.0011) 0.9150 (±0.0015) 0.9358 (±0.0012) 

Resnet-50 
(He et al. 2016)  

0.9377 (±0.0008 0.9616 (±0.0010) 0.9396 (±0.0008) 0.9457 (±0.0009) 

Proposed Method 
(Resnet-50 based) 

0.9646 
(±0.0007) 

0.9852 (±0.0009) 0.9430 (±0.0011) 0.9636 (±0.0013) 
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Figure 11. Graphical representation of Table 1 
 

 
 
Figure 12. ROC Curve of the proposed network and random model 
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Figure 13. Confusion matrix derived from the experimental results 
 
For the downstream task of classification of metastatic tissue, our proposed method produced the highest scores 
in all categories of accuracy, recall, precision, and F1-Score, as shown in Table 1. Figure 11 is a graphical 
representation of this data which emphasizes the difference in performance between different networks from 
the experiment, which also demonstrates the outperformance of the proposed network. Figure 12 shows the 
ROC curve, where the proposed network is comparatively closer to the positive y axis compared to a random 
model, which proves its high accuracy. The confusion matrix of Figure 13 also indicates that the proposed 
network generated a high level of accuracy, as shown in the darkness of the colors.   
 
Object Detection 
 
Table 2. Experimental results from the object detection task 
 

 Backbone AP 
YOLOv2 
(Redmon and Farhadi 2017) 

Darknet-19 21.4 

SSD 
(Liu et al. 2016) 

Resnet-50 29.8 

EfficientDet-D0 
(Tan et al. 2020) 

Efficient-
B0 

32..9 

Faster R-CNN 
(Ren et al. 2015) 

Resnet-50 34.8 

YOLOv3 
(Redmon et al. 2018) 

Darknet-53 35.4 

RetinaNet 
(Lin et al. 2017) 

Resnet-50 38.1 

Proposed Method 
(RetinaNet based) 

Resnet-50 46.9 
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Figure 14. Graphical representation of Table 2 
 

 
 
Figure 15. Example images of object detection from the proposed network 
 
Object detection of SRCs also exceeded the state-of-the-art methods, producing an average precision in the IoU 
of 46.9, as shown in Table 2. Figure 14 illustrates the graphical depiction, where the bar for the proposed method 
is taller than any other bars. The whole slide images in Figure 15 depict the performance of the method, where 
blue boxes are the predictions of the network to be SRCs.  
 
Segmentation 
 
Table 3. Experimental results for the segmentation task 
 

 mIoU 
PSPNet 
(Zhao et al. 2017) 

77.9 

Multipath-RetineNet 
(Lin et al. 2017) 

80.2 

Resnet-38-MS-COCO 
(Wu et al. 2019) 

83.9 

DeepLabv3 
(Chen et al. 2017) 

84.8 

Proposed Method 86.4 
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Figure 16. Graphical representation of Table 3 
 
Table 3 shows that the downstream task of segmenting nuclei resulted in the mean IoU precision of 86.4, again 
surpassing previous methods. Figure 16 illustrates the difference of accuracy between different networks, where 
the bar in purple shows the proposed network with comparably high results.  
 

Conclusion 
 
In this paper, I proposed an artificial network that improves the efficiency and accuracy of the pathological 
analysis of tumors. The proposed method consists of a denoised AutoEncoder based representation learning 
and the transfer learning method. This allows the network to process multiple downstream tasks such as classi-
fication, segmentation, and object detection in a decreased time and increased accuracy compared to previous 
methods of pathological analysis performed by a human pathologist. From the four datasets of pathological 
images from various organs of the body, I carried out four distinct experiments addressing multiple downstream 
tasks. From the experiments, the proposed method achieved state-of-the-art results, outperforming previous 
approaches. In the future, I aim to apply this proposed network in real-world clinical settings, potentially re-
ducing the strains and time consuming labor of pathologists with a higher time efficiency and precision. 
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