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ABSTRACT 
 
Cardiovascular Disease (CVD) is a leading cause of mortality worldwide, and its early and accurate diagnosis 
is crucial for effective treatment and patient care. Medical imaging, particularly X-ray imaging, plays a crucial 
role in the detection and assessment of cardiovascular abnormalities. In recent years, Convolutional Neural 
Networks (CNNs) have emerged as a powerful tool in medical image analysis, demonstrating promising results 
in various diagnostic tasks. This research paper investigates the application of CNNs for the automated diagno-
sis of CVD from X-ray images. The CVD diagnosis framework proposed in this study consists of three key 
modules. The first module is an X-ray feature extractor built using a state-of-the-art CNN architecture. The 
second module is an age prediction component, which accurately estimates the age of the patients from the X-
ray images. Finally, the third module is the CVD classifier, which categorizes the input X-ray images into four 
predefined severity categories of CVD. Through extensive experiments, the proposed method has demonstrated 
its capability to offer novel insights into the potential use of X-ray images for predicting systemic biomarkers 
in the diagnosis of CVD. I expect that the proposed CVD diagnosis method can provide a significant advance-
ment in the field of cardiovascular healthcare by offering an accurate, efficient, and automated solution for early 
detection of CVD. 
 

Introduction 
 
Cardiovascular Disease 
 
Cardiovascular Disease (CVD) remains a leading cause of morbidity and mortality worldwide, posing a signif-
icant public health challenge. Timely and accurate diagnosis of CVD is crucial for effective management, risk 
stratification, and treatment planning, thereby improving patient outcomes and reducing the burden on 
healthcare systems. Medical imaging, particularly X-ray imaging, plays a pivotal role in diagnosing and as-
sessing various cardiovascular conditions.  

Traditionally, the diagnosis of CVD is performed on CT (Computed Tomography) scans. It has been 
widely employed in clinical practice for several years. CT is a non-invasive medical imaging technique that 
uses X-rays to create detailed cross-sectional images of the heart and blood vessels. The process involves cap-
turing multiple X-ray images from different angles, which are then reconstructed by a computer to create a 3D 
representation of the cardiovascular system. CVD diagnosis using CT scans is a valuable and widely used 
method, but it does come with certain limitations. 
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Diagnosis of Cardiovascular Disease 
 
CT scans are more complex and expensive imaging procedures compared to X-rays. As a result, access to CT 
facilities may be limited in certain regions or healthcare settings, particularly in resource-constrained areas. 
Additionally, the cost of CT scans can be prohibitive for some patients, making it difficult for them to undergo 
the procedure for routine screening or early diagnosis of cardiovascular conditions.  

Coronary Artery Calcium Score (CACS), measured from CT scans, has emerged as a popular method 
for assessing the risk of CVD. The presence and extent of CACS can provide valuable information about the 
overall burden of atherosclerosis and can aid in predicting a patient's risk of future cardiovascular events. How-
ever, meaningful CACS values are often associated with patients who already have advanced stages of CVD or 
significant atherosclerotic plaque burden. As a result, the method may not be as effective in identifying indi-
viduals in the early stages of cardiovascular disease or those at high risk but showing no apparent calcification. 
 

 
 
Figure 1. Example of CACS from CT scan 
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Proposed Method 
 
To address the aforementioned problem, I proposed a novel CVD diagnosis method through X-ray images. The 
proposed method takes X-ray images as input and generates a probability-based categorization of the input X-
ray images into four predefined severity categories of CVD. The input X-ray images are passed through the X-
ray feature extractor, where they are transformed into feature maps, capturing essential patterns and infor-
mation. These feature maps are then fed to the CVD classifier to predict the severity categories of CVD. In 
addition to the feature extractor and CVD classifier, I have introduced an age prediction network as part of the 
framework. This age prediction network provides age-aware information during the training process, recogniz-
ing that age may be correlated with the existence and progression of CVD. By incorporating age as an additional 
input during training, the proposed method aims to enhance the accuracy and sensitivity of the overall diagnostic 
process, accounting for potential age-related variations in cardiovascular conditions.  
 The detailed process of the proposed method and comprehensive experimental results will be presented 
in Chapter 3 and Chapter 4, respectively. 
 

Related Work 
 
Diagnosis of Cardiovascular Disease Through X-ray 
 
Diagnosing CVD from X-ray images involves the interpretation and analysis of radiographic images of the 
chest to detect signs of cardiovascular abnormalities. X-ray imaging, also known as radiography, is a common 
and widely available diagnostic tool used in clinical practice to visualize the heart, lungs, and other structures 
within the chest cavity. Trained radiologists or cardiologists analyze the X-ray images to identify any signs of 
cardiovascular abnormalities. They look for specific features or findings that may indicate various cardiovas-
cular conditions, such as heart enlargement, pulmonary congestion, abnormal heart shapes, or evidence of vas-
cular abnormalities. It is important to note that while X-ray imaging is a valuable diagnostic tool, it may not be 
as sensitive or specific as other imaging modalities, such as echocardiography or cardiac MRI, in certain cases.  

However, X-ray imaging is generally considered a more cost effective option compared to more ad-
vanced imaging modalities such as computed tomography or magnetic resonance imaging. This cost advantage 
has made X-ray a widely utilized input for AI-powered biomarker analysis in various types of diseases. The use 
of X-ray images as input data for AI-driven biomarker analysis has gained significant momentum in the medical 
field. It has proven particularly valuable in the assessment of various diseases, such as pulmonary conditions 
(e.g., pneumonia, lung cancer), skeletal disorders (e.g., fractures, arthritis), and cardiovascular diseases (e.g., 
coronary artery disease, congestive heart failure). 
 
Convolutional Neural Network 
 
Over the past decade, advancements in artificial intelligence and deep learning techniques, particularly Convo-
lutional Neural Networks (CNNs), have shown great promise in medical image analysis, revolutionizing disease 
diagnosis and prognosis. CNNs consist of core building blocks known as convolutional layers, each comprising 
a set of learnable filters or feature detectors called kernels. These filters slide or convolve across the input 
image, capturing local patterns and features at various spatial locations. Through this process, the CNN can 
extract meaningful and hierarchical features, including CVD-related latent features, from the input X-ray image. 

The hierarchical architecture of CNNs empowers them to automatically learn complex and hierarchical 
representations of CVD-related features present in the X-ray images. Beginning with low-level features such 
as edges and corners in the early layers, the network progressively learns more abstract and high-level features 
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in deeper layers. This ability to autonomously learn feature hierarchies is the key factor that renders CNNs so 
potent and effective in image recognition tasks.  

In this research, I developed the proposed CVD diagnosis system heavily based on the state-of-the-art 
CNN architectures. As a result, the trained CNNs have become instrumental in identifying crucial cardiovascu-
lar characteristics within X-ray images, aiding in the diagnosis and management of CVD. 
 

Proposed Approach 
 
Architecture Overview 
 

 
 
Figure 2. Overall Architecture of the Proposed Method 

 
This chapter offers a comprehensive overview of the proposed method, including its operation and the under-
lying reasons behind the network's development. Figure 2 illustrates the overall architecture of the proposed 
methods. It consists of three modules: the X-ray Feature Extractor, the CVD Diagnosis Network, and the Age 
Prediction Network. Detailed information about each module will be provided in the following subchapters. 
 
X-Ray Feature Extractor  
The proposed X-ray Feature Extractor exploits a Convolutional Neural Network designed to process chest X-
ray images. This network transforms the input X-ray images into feature maps that encapsulate the essential 
visual attributes of the images. These feature maps subsequently serve as inputs to both the age prediction 
network and the CVD diagnosis network. The training of the X-ray Feature Extractor involves optimizing two 
distinct loss functions pertinent to the downstream tasks of age prediction and classification of CVD severity 
categories. Throughout the training phase, the X-ray Feature Extractor learns the ability to extract crucial fea-
tures, potentially harboring diagnostic cues for CVD assessment. I developed the X-ray Feature Extractor based 
on Resnet-50 (He et al. 2016) which shows comparable performance in image classification tasks.  
 
CVD Diagnosis Network 
The objective of the CVD Diagnosis Network is to predict the severity category of CVD. The process of as-
signing the input X-ray image to a specific CVD severity category hinges upon the utilization of the feature 

Volume 13 Issue 1 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 4



maps derived from the X-ray Feature Extractor. For the construction of the CVD Diagnosis Network, I em-
ployed a two-layer neural network architecture. The output of the network, probability of each severity category 
of CVD, is then used to calculate the loss value. I utilize the cross-entropy loss function which is popularly used 
to train classification models. The cross-entropy loss function is explained in Chapter 3.2. 
 
CVD Age Prediction Network  
To enhance the precision of the proposed method, an Age Prediction Network is incorporated to estimate the 
age of patients based on the provided X-ray image. This age-aware training strategy allows the network to 
capture more informative feature maps that could hold relevance to CVD. Similar to the architecture of the 
CVD Diagnosis Network, the Age Prediction Network also adopts a two-layer neural network structure. The 
predicted age is compared to its ground truth in order to quantify loss value. The training procedure is explained 
in Chapter 3.2. 
 
Loss Function 
 
During the training of the proposed network, I utilized two distinct loss functions: the cross-entropy loss func-
tion for the CVD Diagnosis Network and the mean square error function for the Age Prediction Network. It is 
important to note that the X-ray Feature Extractor is trained by both loss functions due to the backpropagation 
algorithm's characteristics. The cross-entropy loss function is commonly employed for object classification 
tasks (Mao et al. 2023), while the mean square error function is well-suited for training regression networks 
that predict continuous values (Redmon et al. 2016). Equations 1 and 2 demonstrate the calculation of each 
respective loss function. (1) 

Equation 1: Cross Entropy Loss Function 
 

 
 

Here, P denotes the predicted probability of the severity categories of CVD. The loss function measures 
the dissimilarity between the predicted probability distribution and the actual probability distribution of classes 
which are the severity level of CVD. The loss value can reach zero when the predicted value perfectly aligns 
with its ground truth, and it can tend toward infinity in case of failure. 

Equation 2: Mean Square Error Function 
 

 
 

Here, n represents the total number of values in the prediction, which is 1 in the proposed method.  
and  denote the predicted age and its ground truth. The mean square error function provides a way to assess 
how well the proposed model's predictions align with the actual values. Lower values of the function indicate 
that the proposed model's predictions are closer to the true values, suggesting better performance. Conversely, 
higher  values imply that the proposed model's predictions deviate further from the actual values, indicating 
poorer performance. Finally, the overall loss function is constructed as a linear combination of the aforemen-
tioned individual loss functions, as shown in Equation 3. 

Equation 3: Overall Loss Function 
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Here, a represents the weight value for the mean square error. Through extensive experimentation, it 
has been discovered that setting a to 0.9 yields the optimal results. These carefully chosen loss functions con-
tribute to the effective training and optimization of the proposed neural network, facilitating accurate predic-
tions of both CVD severity categories and age from X-ray images. 
 
Implementation Details 
 
In this chapter, I present a comprehensive overview of the development process behind the proposed method. 
The X-ray Feature Extractor in the proposed approach is based on the Resnet-50 architecture, which has proven 
to be effective in learning intricate features from medical images. Additionally, I implemented two neural net-
works: one for the Age Prediction Network and the other for the CVD Diagnosis Network. During the training 
process, I employed the Adam optimizer (Kingma et al. 2014) with a learning rate of 0.0001 for 100 epochs. 
At the 80th epoch, a learning rate decay of 0.1 was applied to fine-tune the training process. To enhance the 
efficiency of training, a batch size of 256 was used, and the data augmentation technique of sharpness augmen-
tation was applied to augment the dataset. 

Experimental Results 
 
Dataset 
 

 
 
Figure 3. Label distribution of the dataset used in this research 

 
In this section, I present a comprehensive description of the dataset used to train the proposed network. The 
dataset comprises a total of 39,592 X-ray samples. Each individual X-ray sample is categorized into one of four 
distinct groups based on its corresponding coronary artery calcium score. The distribution of these labels is 
illustrated in Figure 3. In terms of demographic annotations, approximately 61.67% of the samples pertain to 
males, while the remaining 38.32% belong to the female category. The collective average age of the patients 
within the dataset registers at 57.4 years. 
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Comparison with State-of-the-Art Method 
 
Table 1 and Figure 4 presents a comparison of performance against state-of-the-art methods. For this compar-
ative analysis, I selected a range of models, including VGG19 (Simonyan et al., 2014), MobileNetV2 (Sandler 
et al., 2018), DenseNet (Huang et al., 2017), Vision Transformer (Dosovitskiy et al., 2020), Swin Transformer 
(Liu et al., 2021), and ResNet-50 (He et al., 2016), all of which have demonstrated comparable performance in 
image classification tasks. 
 
Table 1. Performance comparison with the state-of-the-art methods 
 

Architecture Accuracy Precision Recall F1-Score 
VGG19 0.7163 0.6785 0.6990 0.6755 

MobileNetV2 0.7280 0.6789 0.7088 0.6986 
DenseNet 0.7666 0.7179 0.7442 0.7308 

Vision Trans-
former 

0.7892 
0.7385 0.7724 0.7658 

Swin Transformer 0.7998 0.7611 0.7897 0.7695 
Resnet-50 0.7886 0.7408 0.7871 0.7590 

Proposed Method 
(Resnet-50 based) 

0.8362 0.7788 0.8190 0.7937 

 
 
Figure 4. Performance comparison with the state-of-the-art methods 

 
The evaluation metrics employed encompass accuracy, precision, recall, and the F1-score, widely 

acknowledged for quantifying the classification model's performance. In terms of results, VGG19 and Mo-
bileNetV2, due to their shallower network layers, exhibit comparatively lower accuracy. Notably, both trans-
former-based methods achieve accuracy levels comparable to the proposed approach. However, these methods 
essentially have high computational cost due to its unique data processing operations. 
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While Resnet-50 achieves an accuracy of 78.86, the proposed method proves its superiority by achiev-
ing the highest accuracy of 83.62. This enhanced performance can be attributed to the joint training of the age 
prediction network, which potentially compels the trained network to generate more precise CVD diagnostic 
outcomes. 
 
Ablation Study 
 
I also conducted an ablation study to quantify how the proposed age prediction network contributes to the 
overall performance. For this experiment, the network was trained in the absence of the age prediction network, 
focusing solely on predicting the severity category of CVD as the baseline approach. This baseline network was 
subsequently compared against the full model that incorporates the proposed approach. The results are pre-
sented in Table 2 and Figure 5, offering a comparison of accuracy between the baseline and the comprehensive 
model.  
 
Table 2. Ablation study result (accuracy comparison) 
 

Architecture Accuracy 
(baseline) 

Accuracy 
(Proposed 
Method) 

VGG19 0.7163 0.7382 
MobileNetV2 0.7280 0.7485 

DenseNet 0.7666 0.8045 
Vision Trans-

former 
0.7892 

0.8042 

Swin Transformer 0.7998 0.8097 
Resnet-50 0.7886 0.8362 

 

 
 
Figure 5. Ablation study result (accuracy comparison) 
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Application of the proposed method consistently yielded accuracy enhancements across all architec-
tural configurations. Notably, DenseNet and ResNet-50, which have deeper network layers, exhibited substan-
tial performance improvements when compared to shallower networks like VGG19 and MobileNetV2. This 
observation underscores the advantageous impact of the proposed method, particularly on models with more 
complex network structures. 

The elements along the diagonal of this matrix provide insights into the model's proficiency in gener-
ating accurate predictions for each category. Remarkably, the proposed method maintains a consistent level of 
accuracy across all four CVD severity categories, thereby substantiating its robustness and reliability. 
 

 
 
Figure 6. Confusion Matrix 
 

Conclusion 
 
In this research, I have explored the potential of convolutional neural networks in automating the diagnosis of 
CVD from X-ray images, a widely accessible and cost-effective imaging modality. Through a comprehensive 
analysis of convolutional neural networks architectures and optimization techniques, I proposed a novel and 
efficient CVD diagnosis framework that leverages the power of deep learning to extract meaningful features 
from X-ray images. The extensive experiments have demonstrated the superiority of the proposed method, 
showcasing its accuracy and robustness in categorizing X-ray images into four predefined severity categories 
of CVD. The results of this study have significant implications for the field of cardiovascular healthcare. The 
ability to automate CVD diagnosis using convolutional neural networks has the potential to transform clinical 
practice by providing medical professionals with a valuable decision-support tool. By expediting the diagnostic 
process and increasing accuracy, the proposed framework can aid in early detection, risk stratification, and 
personalized treatment planning for patients with cardiovascular conditions. 
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