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ABSTRACT 
 
The field of drug discovery has garnered significant attention, particularly in light of advancements brought 
about by the "Homo Hundred" generation. Among the critical processes in drug discovery is drug screening, 
which is an important process in identifying and eliminating candidates that may pose potential side effects in 
the human body before in vivo experiments. The drug screening is often conducted via prediction of drug-drug 
Interaction, which utilizes algorithms to assess the likelihood and potential consequences of interactions be-
tween different drugs. This approach is a multifaceted process that involves the identification of potential new 
therapeutic entities by employing a combination of computational, experimental, translational, and clinical 
models. Traditional approaches to predicting drug-drug interactions in the context of drug discovery and 
polypharmacy heavily rely on empirical knowledge, in vitro assays, and animal experiments. However, these 
methods suffer from drawbacks such as being time-consuming, resource-intensive, and limited in their ability 
to capture the complete complexity of drug interactions. Therefore, there is a pressing need to develop auto-
mated and efficient methods that can accurately predict drug-drug interactions. To address the aforementioned 
problem, we proposed a novel representation learning based framework for prediction of drug-drug interaction. 
The proposed framework consists of two stages: representation learning, which focuses on extracting meaning-
ful features from drugs, and transfer learning, utilized to train the drug-drug interaction prediction network. 
Through extensive experimentation, we have shown that the proposed drug-drug interaction prediction frame-
work surpasses existing methods in terms of performance. 
 

Introduction 
 
Drug-drug interactions are a significant concern in modern healthcare, as the simultaneous administration of 
multiple medications can lead to unexpected adverse effects or diminish therapeutic efficacy. Accurate predic-
tion of potential drug-drug interactions is of paramount importance to ensure patient safety and optimize treat-
ment outcomes. Additionally, drug-drug interactions play a crucial role in the drug discovery pipeline, a com-
plex and multifaceted process aimed at identifying and developing safe and effective therapeutic compounds. 
During drug discovery, numerous chemical compounds  are screened and tested to identify potential drug can-
didates with desired pharmacological properties. Due to this reason, assessing and predicting potential drug-
drug interactions early in the drug discovery process is very important. There have been numerous research 
efforts focused on drug-drug interactions to solve this problem. 
 Early methods for drug-drug interaction prediction primarily relied on knowledge-based approaches, 
which utilized existing knowledge about drug properties, such as chemical structures, pharmacological profiles, 
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and known interactions. These approaches often utilized expert-curated drug interaction databases, such as 
DrugBack (Wishart et al. 2008) or Medline (Greenhalgh 1997), to extract relevant information. While 
knowledge-based methods provided valuable insights, they suffered from limited coverage, as they were heav-
ily based on pre-existing knowledge and were not able to capture novel drug interactions.  
 To address this problem, numerous machine learning-based drug-drug interaction methods have been 
proposed in recent years. To begin with, Feng et al. proposed  a Deep Predictor for Drug-Drug Interactions 
(DPDDI) system which predicts drug-drug interaction using graph convolution network (Feng et al. 2020). This 
method demonstrates the feasibility of utilizing convolutional neural networks to solve drug-drug interaction 
prediction. Their method achieved an accuracy of 94.0% on the DrugBank dataset. Rozemberczki et al. pro-
posed an unified drug pair scoring framework called ChemicalX (Rozemberczki et al. 2022). Their work pro-
vides a unification of drug-drug interaction, polypharmacy side effects and synergistic drug combination pre-
diction tasks. Al-Rabeah et al. exploits the classic graph similarity measurement approach to find better drug 
representation in order to increase accuracy of the drug-drug interaction prediction system (Al-Rabeah et al. 
2022). They achieved an Area Under Receiver Operating Characteristic (AUROC) of 0.990 on the DrugBank 
dataset. However, a major limitation of these supervised learning-based methods is their reliance on small-scale 
datasets. Due to the challenges associated with collecting labeled drug-drug interaction samples, researchers 
often have access to limited datasets, resulting in a narrow representation of drugs. These underdeveloped mod-
els are expected to exhibit poor performance in real-world applications, including the evaluation of new drugs 
within the drug discovery pipeline. 

To solve this problem, we propose a novel approach for predicting drug-drug interactions based on 
drug representation learning. The proposed method is composed of two steps: drug representation learning and 
transfer learning. In the drug representation learning step, we employ a convolutional neural network as a drug 
feature extractor to capture valuable features from the input drugs. This trained drug feature extractor extracts 
meaningful drug characteristics by leveraging pre-measured drug similarity scores. During this stage, we utilize 
three different widely-recognized drug similarity measurement metrics. In the transfer learning phase, we lev-
erage the pre-trained drug feature extractor as a starting point for training our drug-drug interaction prediction 
network. This approach makes the drug-drug interaction prediction network more accurate.  
 

Related Work 
 
Drug-Drug Interaction and Drug Discovery Pipeline 
 
Drug-drug interaction occurs when two (or more) medications interact, or when a drug interacts. Drug interac-
tion can alter the way a medication functions or induce undesirable side effects. Drug-drug interactions are 
important and at the same time fatal because they can affect treatment effectiveness, lead to adverse effects, 
and increase risk of toxicity or overdose.  

Drug-drug interaction prediction is often employed during the initial stages of drug discovery when 
researchers are screening potential drug candidates. By identifying possible interactions between the candidate 
drug and commonly prescribed medications, researchers can prioritize drug candidates with lower drug-drug 
interaction risks, reducing the chances of adverse effects or contraindications. 
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Figure 1. Flow chart of the drug discovery pipeline (Vamathevan et al. 2019) 
 

As shown in Figure 1, the drug discovery pipeline is a complex and multifaceted process that involves 
the identification, development, and testing of potential new drugs before they can be approved and brought to 
market. This pipeline typically consists of several stages, each with its own challenges and requirements. The 
entire process is both time-consuming and labor-intensive, often taking many years and involving significant 
resources.  

In this research paper, we introduce a machine learning-driven system for predicting drug-drug inter-
actions. The proposed system takes a pair of drugs as input and predicts potential drug interactions. We con-
ceptualize this process as an object classification system, as we categorize drug interactions into four distinct 
categories: mechanism, advice, effect, and interaction. The comprehensive details, including the operational 
framework, mathematical approaches, and experimental outcomes are explained in Chapters 3 and 4. 
 
Machine Learning Based Object Classification  
 
Image classification is one of the core computer vision tasks, where the computer receives an input image to 
classify and assigns it to one of a fixed set of categories. In order to successfully implement the image classifi-
cation system, machine learning systems such as convolutional neural networks can be used. Convolutional 
neural networks use convolutional layers to capture spatial hierarchies in the training dataset, enabling them to 
recognize complex patterns. Because of these advantages, this technique finds numerous practical applications 
in the field of research and industry.  

For instance, one promising application is face identification, where the system receives the face image 
as an input and the confidence score indicating the level of correctness of the identification. Another prominent 
example of convolutional neural networks being used in medical imaging is covid-19 detection, where the sys-
tem takes the x-ray image as an input and determines whether the patient is infected to covid-19 or not. In this 
research, we consider prediction of drug-drug interaction as an object classification since it involves categoriz-
ing potential interactions between drugs into distinct classes (or categories) about their effects. The detailed 
explanation will be provided further in Chapter 3. 
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Proposed Method 
 
In this chapter, we explain the detailed process of the proposed method including a thorough understanding of 
its implementation and effectiveness. The proposed drug-drug interaction prediction method consists of two 
learning stages. The first learning stage involves representation learning, which aims to train the network to 
learn to extract meaningful features, and transfer learning, where it utilizes pretrained weight to train the drug-
drug interaction prediction network.  
 
Drug Representation Learning 
 

 
 
Figure 2. Architecture of the proposed drug representation learning 
 
The ultimate goal of the proposed drug representation learning is to enhance efficiency of drug feature extractor, 
extracting meaningful drug features that comprehensively capture the molecular characteristics and interactions 
of drugs. Following procedure starts with preprocessing of chemical formulas of drug samples. All the chemical 
formulas go through a conversion process with the SIMILES (Toropov et al. 2005) algorithm that transforms 
the chemical formulas into a simplified and canonical representation of molecular structures. The proposed drug 
feature extractor takes these simplified formulas as input and produces feature maps that represent the chemical 
characteristic for each input drug, as output. Here we define this process as follows: DFE : Drugonehot → feat. 
Where, DFE denotes drug feature extractor, Drugonehot  and feat represent the simplified formula and extracted 
feature maps, respectively. To quantify the similarity between two drug features, we employ the commonly 
utilized cosine similarity function, as expressed in Equation 1. 

Equation 1: Similarity function 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐵𝐵 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴  ∘ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐵𝐵

|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴| × |𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐵𝐵| 

 
In the equation 1, 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒌𝒌 denotes the extracted drug features from input drug-k. 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐵𝐵 represents the 

similarity index between two drug features, with values ranging from -1 to 1. To enhance the similarity between 
drug features extracted from the most similar pairs within the input set of drug pairs, we begin by transforming 
these similarity indices into probabilities, as illustrated in Equation 2. 

Equation 2: Softmax function 
 

Volume 13 Issue 1 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 4



𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,𝐵𝐵 =
𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐵𝐵

𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐵𝐵 + 𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐶𝐶 + 𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴,𝐷𝐷
 

 
 Here, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗 represents the probability of similarity index between drug features 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒊𝒊 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗. 
Ultimately, loss value is calculated using the cross-entropy loss function as outlined below. 

Equation 3: Cross-entropy loss function 
 

𝐿𝐿𝑐𝑐𝑐𝑐 =  −𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
 

The cross-entropy loss function measures the error between the target probability, computed based on 
the most closely related drug pairs selected from the input drug set. By employing this loss function, the drug 
feature extractor learns the ability to consistently extract similar features for chemically similar drugs. 

Furthermore, we introduce supplementary neural networks for the direct estimation of drug similarity. 
While the aforementioned cross-entropy loss function relies on indirect relations between drugs, the direct drug 
similarity estimation approach provides the network with more robust and explicit information. To quantify the 
accuracy of this drug similarity estimation, we employ the mean square error function, as explained in Equation 
4. 

Equation 4: Mean square error function  
 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =  |𝑦𝑦 −  𝑦𝑦�|2 
 

In Equation 4, y represents the estimated drug similarity, while 𝑦𝑦�  denotes its actual value, which is 
pre-computed using conventional drug similarity measurement algorithms. A comprehensive description of 
these traditional drug similarity algorithms is explained in Chapter 4. The final form of loss function utilized in 
the drug representation learning is explained in Equation 5.  

Equation 5: Final loss function 
 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝐿𝐿𝑐𝑐𝑐𝑐 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 
 

The final loss function is a linear combination of the cross-entropy loss function and mean square error 
function.  
 
Drug-Drug Interaction Prediction Network 
 
In the proposed transfer learning, the pre-trained drug feature extractor is utilized as a starting point to train the 
drug-drug interaction prediction network. Figure 3 illustrates the overall architecture of the transfer learning.  
 

 
 
Figure 3. Architecture of the proposed transfer learning (drug-drug interaction prediction) 
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Similarly, when provided with two input drug pairs, the drug feature extractor generates corresponding 

drug features. These extracted features are then merged and input into the drug-drug interaction prediction 
network, which predicts potential drug interactions. This training process employs a straightforward supervised 
approach, relying on ground truth labels. Consequently, we apply the cross-entropy loss function, which shares 
the same mathematical form as Equation 3, for training. 

The architecture for the drug-drug interaction prediction network is a two-layered neural network. We 
train the network for 80 epochs with a learning rate of 0.0001. The proposed transfer learning approach outper-
forms networks trained through conventional supervised methods. Detailed experimental results and compari-
sons are explained in Chapter 4. 
 

Experimental Results 
 
Dataset 
 
In this chapter, we introduce the dataset used to train and evaluate the proposed drug-drug interaction prediction 
method. We utilize the DS1 (Zhang et al. 2017), DS2 (Wan et al. 2019), and DS3 (Gottlieb et al. 2012) dataset.  

DS1 dataset comprises a collection of 548 unique drugs, with a total of 300,304 drug pairs. Among 
these pairs, a substantial number, precisely 97,168 interactions, have been identified. DS2 is a larger dataset, 
consisting of 707 distinct drugs and a more extensive set of drug pairs, totaling 499,849. Interestingly, this 
dataset contains a smaller number of interactions, specifically 34,412 interactions. DS3 encompasses 807 indi-
vidual drugs and a vast collection of 651,249 drug pairs. However, this dataset contains a relatively low number 
of interactions, specifically 10,078 interactions. 
 
Protocol 
 
To assess the performance of the proposed method, we evaluate it using three metrics: precision, recall, and f-
score. The calculation of each metric is detailed in Equation 2-4. 

Equation 2: Precision 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

 
Equation 3: Recall 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

 
Equation 4: F-score  

 

𝐹𝐹- 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ⋅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

 
In the equation 2-4, true positive occurs when the model or test correctly identifies a positive instance 

as positive. In other words, it correctly classifies an example as belonging to the positive class when it does 
indeed belong to that class. A false positive occurs when the model or test incorrectly identifies a negative 
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instance as positive. A false negative occurs when the model or test incorrectly identifies a positive instance as 
negative.  
 Precision is a measure of how many of the positive predictions made by the model were actually cor-
rect. High precision indicates that the model makes positive predictions sparingly and tends to be accurate when 
it does so. Recall measures the ability of the model to correctly identify all positive instances in the dataset. 
High recall indicates that the model is effective at capturing all positive instances. Finally, the F-score is the 
harmonic mean of precision and recall. It provides a balance between these two metrics, helping you assess a 
model's overall performance.  

For comparison, we choose 6 different previous drug-drug interaction prediction methods. The detailed 
analysis and comparison is explained in chapter 4.3.  
 
Comparison with State-Of-The-Art Methods 
 
Table 1. Performance comparison with previous drug-drug interaction prediction methods 
 

 F-score on each DDI type Overall Performance 
Method Advice Effect Mecha-

nism 
Int Precision Recall F-score 

(Liu et al. 2016) 0.777 0.693 0.702 0.464 0.757 0.647 0.698 
(Yi et al. 2017) - - - - 0.737 0.708 0.722 

(Zhang et al. 
2018) 

0.803 
0.718 0.740 0.543 0.741 0.718 0.729 

(Xiong et al. 
2019) 

0.835 
0.758 0.794 0.514 0.773 0.737 0.754 

(Fatehifar and 
Karshenas 2021) 

0.829 
0.759 0.845 0.501 0.785 0.751 0.769 

(Molina et al. 
2023) 

0.845 
0.862 0.884 0.784 0.837 0.850 0.843 

DrugSimNet 
(ours) 

0.906 
0.895 0.928 0.798 0.889 0.893 0.895 

 
Table 1 summarizes the performance comparison of the proposed method with previous drug-drug interaction 
prediction approaches. The first method by Liu et al. (Liu et al. 2016) and the second by Yi et al. (Yi et al. 2017) 
achieved relatively low accuracy due to their shallow network depth. In contrast, the third method presented by 
Xiong et al. (Xiong et al. 2019) and the fourth by Fatehifar and Karshenas (Fatehifar and Karshenas 2021) 
exhibited improved accuracy thanks to their deeper network architectures. However, these supervised ap-
proaches did not yield comparable performance. The last method in the comparison, as introduced by Molina 
et al. (Molina et al. 2023), achieved state-of-the-art performance by incorporating drug similarity during the 
training process. Ultimately, the proposed method surpasses all of these previous approaches, demonstrating a 
significant performance advantage. 

We attribute this superiority to the proposed approach of using drug similarity for drug representation 
learning. Throughout the training process, the network learns to extract consistent and meaningful drug features 
by leveraging drug similarity. This unique training strategy significantly enhances the accuracy of the trained 
network. 
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Figure 4. Performance comparison graph (left) and confusion matrix (right) 

Figure 4 illustrates the performance evaluation graph and the confusion matrix for the proposed 
method. As detailed in Table 2, the proposed approach consistently outperforms all previously employed drug-
drug interaction prediction methods by a significant margin. The substantial diagonal component values in the 
confusion matrix highlight the robustness and consistency of our method across all four drug-drug interaction 
categories. 
 
Ablation Study  
 
In this chapter, we perform an ablation study to assess the influence of the drug similarity prior on the final 
performance. Initially, we train the drug-drug interaction prediction network without incorporating drug repre-
sentation learning, which we refer to as the baseline, representing a purely supervised approach. To explore the 
effectiveness of the drug similarity prior, we introduce three distinct measures of drug similarity: ATC code, 
Molecular Structure, and Gene Ontology. 

For a fair comparison, we keep all training hyperparameters constant, except for the ground truth drug 
similarity, which is derived from the three aforementioned measurements. We start by training three models 
using different ground truth drug similarity values calculated from ATC codes, Molecular Structure, and Gene 
Ontology. These models are referred to as DrugSimNet ATC, DrugSimNet MS, and DrugSimNet GO, as indi-
cated in Table 2. 
 
Table 2. Ablation study results  
 

 Overall Performance 
Method Precision Recall F-score 
Baseline 0.772 0.736 0.739 
DrugSimNet ATC 0.845 0.859 0.857 
DrugSimNet MS 0.852 0.858 0.860 
DrugSimNet GO 0.876 0.879 0.880 
DrugSimNet 
(GO+ATC) 

0.880 0.882 0.884 
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DrugSimNet 
(GO+MS) 

0.882 0.885 0.883 

DrugSimNet 
(GO+MS+ATC) 

0.889 0.893 0.895 

 

 
 
Figure 5. Ablation study performance graph 
 

Table 2 and Figure 5 provide a summary of the results from our ablation study. When compared to the 
baseline, the three models that incorporate drug similarity-based drug representation learning achieved superior 
performance, conclusively demonstrating the benefits of utilizing drug similarity priors in classifying drug-drug 
interactions. In particular, the incorporation of Gene Ontology led to the most significant performance improve-
ment. For a more comprehensive examination, we explored the combined use of multiple drug similarity 
measures, including Gene Ontology along with ATC code, Molecular Structure, and a combination of Molec-
ular Structure and ATC code. 

As displayed in Table 2, the incorporation of multiple combined drug similarity measures has signifi-
cantly improved the overall performance. Notably, the utilization of all three drug similarity measures has 
yielded the highest performance. These experimental results clearly demonstrate that integrating drug similarity 
during the representation learning process substantially enhances the accuracy of the trained model. 
 

Conclusion 
 
In this research, we proposed a novel framework that incorporates representation learning and transfer learning 
to predict drug-drug interactions. The proposed approach allowed us to extract meaningful features from drugs 
and train a prediction network, ultimately leading to a significant boost in predictive accuracy. This study high-
lighted the use of drug similarity priors in drug representation learning. By incorporating drug similarity 
measures derived from ATC codes, Molecular Structures, and Gene Ontology, we achieved remarkable im-
provements in performance. Through experimentation, we compared the proposed method against existing ap-
proaches. The results clearly showed that the proposed framework surpasses previous methods by a significant 
margin. We also conducted an ablation study to examine the influence of different drug similarity priors, shed-
ding light on the nuances of their impact. Future research will focus on expanding the scope of drug similarity 
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priors, incorporating more diverse data sources, and validating our findings through clinical trials and real-
world applications. 
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