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ABSTRACT 
 
Creating a simulation of a system enables the tuning of control systems without the need for a physical system. 
In this paper, we employ Lagrangian Mechanics to derive a set of equations to simulate an inverted pendulum 
on a cart. The system consists of a freely-rotating rod attached to a cart, with the rod’s balance achieved through 
applying the correct forces to the cart. We manually tune the proportional, integral, and derivative gain coeffi-
cients of a Proportional Integral Derivative controller (PID) to balance a rod. To further improve PID perfor-
mance, we can optimize an objective function to find better gain coefficients. 
 

Introduction 
 
PID Controllers 
 
A PID is a simple and computationally inexpensive controller to implement. Other traditional controllers in-
clude Bang-Bang (On-Off) controllers and Model Predictive Control (MPC) [1][2]. There are also learning-
based controllers that utilize deep learning techniques, such as imitation learning and reinforcement learning 
[3].  

The PID controllers make decisions based solely on the state error without requiring the system model. 
Let e(t) denote the error in the state as a function of time, where the error is the difference between the target 
and the actual state. The control action u(t) over time is the following: 
 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡
0 + 𝐾𝐾𝑑𝑑𝑒𝑒′(𝑡𝑡) (1) 

 
Constants Kp, Ki, and Kd are the proportional gain, integral gain, and derivative gain, respectively. 

These constants must be tuned to maximize PID performance. 
 
System Overview 
 
In team settings, tuning PIDs for the physical system can prove to be exceedingly time-consuming, often hin-
dering progress on other critical tasks [1]. However, by developing a simulation of the physical system based 
on its physics model, we can significantly streamline the PID tuning procedure, making it more manageable 
and efficient. In this paper we develop an inverted pendulum on a cart simulation (Figure 1) and tune a PID in 
two ways to balance the rod: manually and with optimization techniques. Developing more effective PID tuning 
methods is important because PIDs are used very commonly in real life, such as cruise control on a car or 
temperature control on a thermostat. 



 
 
Figure 1. Inverted pendulum on a cart diagram: x = cart position, 𝜃𝜃 = rod angle, 𝑥𝑥𝑚𝑚= ball x position, 𝑦𝑦𝑚𝑚= ball 
y position, M = cart mass, m = ball mass, F = net force on cart, and L = rod length. SI units are used. 
 

The assumptions made for this scenario are as follows: 
1. The rod is massless 
2. The ball is approximated as a point mass. 
3. There is no rotational friction acting on the rod. 
4. Friction is present between the cart and the floor. 
 
In this paper, we specifically consider e(t) to be the error in the rod angle. To counteract a positive 

error in the rod angle, a negative force is applied to the cart. Conversely, negative errors result in applying a 
positive force. Hence, the PID controller is limited to the range of −𝜋𝜋/2 < 𝜃𝜃 < 𝜋𝜋/2 because when 𝜃𝜃 is out of 
that range, negative cart forces will increase positive errors, and positive cart forces will decrease negative 
errors. 
 

Creating the Simulation 
 
Simulation Information 
 
The simulation runs with an update time of ∆𝑡𝑡 = 0.001s. Every update, the position, velocity, and acceleration 
are calculated. These rules apply for 𝜃𝜃 as well: 
 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + 𝑥̇𝑥𝑡𝑡∆𝑡𝑡 + 1
2
𝑥̈𝑥𝑡𝑡∆𝑡𝑡2  (2) 

𝑥̇𝑥𝑡𝑡+1 = 𝑥̇𝑥𝑡𝑡 + 𝑥̈𝑥𝑡𝑡∆𝑡𝑡    (3) 
 

The double dot indicates acceleration. (2) and (3) are the basic kinematics equations of physics. Ac-
celeration is calculated using Lagrangian Mechanics. The derivation for acceleration is in the Lagrangian Me-
chanics section. Although the acceleration is constantly changing, we assume that it only changes once per 
update, and the system parameters are as follows: 
 

Parameters m M L 𝜇𝜇 g 

Value 5 kg 5 kg 1 m 0.3 9.8 
 
 



Lagrangian Mechanics 
 
Setting up the Equations 
To calculate the linear acceleration of the cart and angular acceleration of the rod in terms of other variables, 
we use Lagrangian Mechanics [4]. Unlike Newtonian Mechanics which is based on forces, Lagrangian Me-
chanics is based on energies. We use Lagrangian Mechanics for this system because calculating the kinetic and 
potential energy is relatively straightforward. After applying Lagrangian Mechanics, we have the following 
equations: 
 

𝐿𝐿 = 𝐾𝐾𝐾𝐾 − 𝑃𝑃𝑃𝑃    (4) 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐹𝐹(𝑡𝑡)    (5) 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃̇𝜃
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0    (6) 

 
The Lagrangian L is an expression for the difference between the kinetic energy and the potential 

energy of the entire system. We apply Lagrangian Mechanics to both components of the state, x and 𝜃𝜃. The 
force applied onto a state component is on the right side of the equation. A net force as a function of time F(t) 
is applied to the cart, and no force is directly applied to the rod angle.  
 
Calculating the Lagrangian 
We first calculate the kinetic energy of the system: 
 

𝐾𝐾𝐾𝐾 = 1
2
𝑀𝑀𝑥̇𝑥2 + 1

2
𝑚𝑚(𝑥̇𝑥𝑚𝑚2 + 𝑦̇𝑦𝑚𝑚2)  (7) 

 
𝑥̇𝑥𝑚𝑚2 and 𝑦̇𝑦𝑚𝑚2 can be expressed in terms of x and 𝜃𝜃: 

 
𝑥𝑥𝑚𝑚 = 𝑥𝑥 − 𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃    (8) 
𝑦𝑦𝑚𝑚 = 𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃      (9) 

 
Differentiating both sides of both equations gives 

 
𝑥̇𝑥𝑚𝑚 = 𝑥̇𝑥 − 𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃    (10) 
𝑦̇𝑦𝑚𝑚 = −𝐿𝐿𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃     (11) 

 
Plugging (10) and (11) into (7) gives 

 
𝐾𝐾𝐾𝐾 = 1

2
𝑀𝑀𝑥̇𝑥2 + 1

2
𝑚𝑚(�𝑥̇𝑥 − 𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 �2 + �−𝐿𝐿𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 �2) (12) 

 
Expanding and simplifying, we get 

 

𝐾𝐾𝐾𝐾 =
1
2
𝑀𝑀𝑥̇𝑥2 +

1
2
𝑚𝑚(𝑥̇𝑥2 − 2𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝐿𝐿2𝜃̇𝜃2(𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)2 + 𝐿𝐿2𝜃̇𝜃2(𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)2 ) 

=
1
2
𝑀𝑀𝑥̇𝑥2 +

1
2
𝑚𝑚(𝑥̇𝑥2 − 2𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝐿𝐿2𝜃̇𝜃2) 

= 1
2
𝑀𝑀𝑥̇𝑥2 + 1

2
𝑚𝑚𝑥̇𝑥2 − 𝑚𝑚𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 1

2
𝑚𝑚𝑚𝑚2𝜃̇𝜃2   (13) 

 



Now, we need to find the potential energy of the system. The potential energy of the cart and rod is 0. 
The potential energy of the ball is the following: 

 
𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃     (14) 

 
Combining (13) and (14), we can calculate the Lagrangian: 

 
𝐿𝐿 = 𝐾𝐾𝐾𝐾 − 𝑃𝑃𝑃𝑃 

=  1
2
𝑀𝑀𝑥̇𝑥2 + 1

2
𝑚𝑚𝑥̇𝑥2 − 𝑚𝑚𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 1

2
𝑚𝑚𝑚𝑚2𝜃̇𝜃2 − 𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃  (15) 

 
Plugging into Lagrange’s Equations 
The next step is to plug (15) into (5) and (6). We first substitute into (5). 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0      (16) 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥
� = 𝑑𝑑

𝑑𝑑𝑑𝑑
((𝑀𝑀 + 𝑚𝑚)𝑥̇𝑥 − 𝑚𝑚𝑚𝑚𝜃̇𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 )  (17) 

= (𝑀𝑀 + 𝑀𝑀)𝑥̈𝑥 − 𝑚𝑚𝑚𝑚�𝜃̈𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 − 𝜃̇𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 �  (18) 
= (𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 − 𝑚𝑚𝑚𝑚𝜃̈𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑚𝑚𝑚𝑚𝜃̇𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃   (19) 

 
Combining (5), (16), and (19), we get 

 
(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 − 𝑚𝑚𝑚𝑚𝜃̈𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑚𝑚𝑚𝑚𝜃̇𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 𝐹𝐹(𝑡𝑡) (20) 

 
The net force F(t) is calculated from frictional force 𝜇𝜇(𝑀𝑀 + 𝑚𝑚)𝑔𝑔 and the applied force u(t): 

 
𝑖𝑖𝑖𝑖 |𝜇𝜇(𝑀𝑀 + 𝑚𝑚)𝑔𝑔| > |𝑢𝑢(𝑡𝑡)|: 

𝐹𝐹(𝑡𝑡) = 0 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑢𝑢(𝑡𝑡) > 0: 

𝐹𝐹(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) −  𝜇𝜇(𝑀𝑀 + 𝑚𝑚)𝑔𝑔      (21) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 

𝐹𝐹(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) + 𝜇𝜇(𝑀𝑀 + 𝑚𝑚)𝑔𝑔  
 

Then, we substitute (15) into (6): 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑚𝑚𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃    (22) 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜃̇𝜃
� = 𝑑𝑑

𝑑𝑑𝑑𝑑
�−𝑚𝑚𝑥̇𝑥𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑚𝑚𝐿𝐿2𝜃̇𝜃�  (23) 

= −𝑚𝑚𝑚𝑚𝑥̈𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑚𝑚𝑚𝑚𝑥̇𝑥𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑚𝑚𝐿𝐿2𝜃̈𝜃  (24) 
 

Combining (6), (22), and (24), we get 
 

−𝑚𝑚𝑚𝑚𝑥̈𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑚𝑚𝑚𝑚𝑥̇𝑥𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝑚𝑚𝐿𝐿2𝜃̈𝜃 − 𝑚𝑚𝑥̇𝑥𝐿𝐿𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0 (25) 
 

Divide both sides by mL: 
 

−𝑥̈𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑥̇𝑥𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝐿𝐿𝜃̈𝜃 − 𝑥̇𝑥𝜃̇𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0   (26) 
 

Simplify: 



 
−𝑥̈𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝐿𝐿𝜃̈𝜃 − 𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 0   (27) 

 
Solving for Acceleration 
We can treat (20) and (27) as a system of linear equations in terms of 𝑥̈𝑥 and 𝜃̈𝜃 to solve for 𝑥̈𝑥 and 𝜃̈𝜃 in terms of 
the other variables. These are the coefficients of the linear equation: 
 

𝐴𝐴 = 𝑀𝑀 + 𝑚𝑚 
𝐵𝐵 = −𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃  
𝐶𝐶 = 𝑚𝑚𝑚𝑚𝜃̇𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 − 𝐹𝐹(𝑡𝑡)        (28) 
𝐷𝐷 = − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃  
𝐸𝐸 = 𝐿𝐿 
𝐹𝐹 = −𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 

 
These substitutions allow us to write (20) and (27) as 

 
𝐴𝐴𝑥̈𝑥 + 𝐵𝐵𝜃̈𝜃 + 𝐶𝐶 = 0 
𝐷𝐷𝑥̈𝑥 + 𝐸𝐸𝜃̈𝜃 + 𝐹𝐹 = 0    (29) 

 
Solving the system of equations gives us the final result: 

 
𝑥̈𝑥 = 𝐹𝐹𝐹𝐹−𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴−𝐷𝐷𝐷𝐷
    (30) 

𝜃̈𝜃 = − 𝐶𝐶+𝐴𝐴𝑥̈𝑥

𝐵𝐵
    (31) 

 
By converting (20) and (27) into a system of linear equations, we are able to solve for 𝑥̈𝑥 and 𝜃̈𝜃 in 

terms of the other known variables. 
 

Tuning a PID Controller 
 
Equation (1) discusses how the control action u(t) is calculated using a PID. The error e(t) is the error in the 
angle. To counteract the error in angle, a force is applied onto the cart. To create an efficient PID, the gain 
coefficients must be tuned. In order to prevent the PID output from being unrealistically large, the output u(t) 
is bounded within the range [-500, 500]. The initial conditions of the system are set to (𝑥𝑥, 𝜃𝜃) = (0, 𝜋𝜋

4
). 

The proportional gain Kp is used to bring the current state closer to the target state. The integral gain 
Ki is used to eliminate steady-state error, which is especially important because of friction. The derivative gain 
Kd is used to decrease overshoot and undershoot. 
 
Manual Tuning 
 
Firstly, we adjust the proportional gain Kp until the PID is able to “balance” the rod with some oscillation. Some 
systems can be controlled only using a P controller, but this can’t be done for an inverted pendulum on a cart 
due to the extreme instability (Figure 2). 
 



 
 
Figure 2. P Controller: (Kp, Ki, Kd) = (-200, 0, 0). Rod angle oscillates around the target angle of 0 
 

In many occasions Ki is tuned before Kd . Tuning Kd first is the better approach here because it helps 
lower the oscillation  (Figure 3), which allows us to adjust Ki later on to decrease steady-state error more accu-
rately. 
 

 
 
Figure 3. PD Controller: (Kp, Ki, Kd) = (-200, 0, -100). Minimal oscillation but there is steady state error. 
 

Finally, Ki can be adjusted to eliminate the steady-state error (Figure 4). 
 



 
 
Figure 4. PID Controller: (Kp, Ki, Kd) = (-200, -20, -100). Minimal oscillation with no steady-state error. 
 

Manual tuning allows us to generate a PID with decent but not optimal control. It’s one of the most 
common ways of tuning PIDs, but there are definitely better options, especially in simulation. We can use 
optimization techniques to search for better gain coefficients. 
 
Optimization-Based Tuning 
 
In order to tune a PID using optimization, we must create a function where the parameters are the gain coeffi-
cients such that when the function is minimized, the optimal gain coefficient values have been found. First, we 
run the simulation for 15 seconds (15000 iterations) using a PID with the objective function parameters as the 
gain coefficients. The relatively long run duration of 15 seconds helps ensure the PID can balance the rod in 
the long-term. The objective function is the following: 
 

𝑓𝑓�𝐾𝐾𝑝𝑝, 𝐾𝐾𝑖𝑖, 𝐾𝐾𝑑𝑑� = �1
𝑛𝑛
∑ 𝑒𝑒(𝑡𝑡)2 + 0.0001��𝐾𝐾𝑝𝑝� + |𝐾𝐾𝑖𝑖| + |𝐾𝐾𝑑𝑑|�  (32) 

 
n is the number of iterations. The optimizer gradually tweaks the function parameters (gain coeffi-

cients) until a local minimum is found. The function is the sum of the root mean squared error (RMSE) of the 
rod angle and the absolute sum of the gain coefficients. We add the gain coefficients because it allows the 
optimizer to find control methods that require less force. A small constant is multiplied to the gain sum in order 
to prevent the optimizer from prioritizing low gains over low error. 

To optimize the objective function, we use scipy.optimize.minimize. It’s important to choose a good 
initial condition to help avoid undesired local minimums, so we experiment with various initial conditions to 
find the best. The following PID was obtained with an initial condition of (Kp, Ki, Kd) = (-300, 0, -100) (Figure 
5). 
 



 
 
Figure 5. Optimized PID (Kp, Ki, Kd) = (-308.08, -63.55, -94.96) the error quickly decreases to zero and stays 
at 0. 
 

The optimized PID also performs well at different starting rod angles, such as 𝜃𝜃 = 𝜋𝜋/6 instead of 𝜃𝜃 =
𝜋𝜋/4 (Figure 6). 
 

 
 
Figure 6. Optimized PID starting at 𝜃𝜃 = 𝜋𝜋/6 
 

Alternatively, we can use mean absolute error (MAE) instead of RMSE in our objective function. 
Using MAE makes convergence slower because the gradient curve of RMSE tends to be more differentiable 
and “smooth” than MAE. On a 2017 MacBook Pro, using RMSE allows for convergence in 167.023s, while 
MAE takes 236.14s. The overall PID performance is similar to that of using RMSE (Figure 7). 
 



 
 
Figure 7. Optimized PID using MAE: (Kp, Ki, Kd) = (-289.57, -77.18, -60.65). The error approaches zero 
quicker than with RMSE but the error stays slightly above zero while slowly decreasing. 
 

Conclusion 
 
Using Lagrangian Mechanics, we successfully modeled the motion of an inverted pendulum on a cart when 
forces are applied onto the cart. This allowed us to simulate the system and develop PID controllers for the 
system. We used both manual tuning and optimization-based tuning methods. For optimization-based tuning, 
we can use PID coefficients similar to those yielding positive results from manual tuning as the initial condi-
tions. This facilitates the generation of highly optimized PID controllers. 

While we achieved positive results with a PID, there are many other options for control systems. For 
example, more sophisticated methods like linear quadratic regulator (LQR) and model predictive control (MPC) 
could have been used, which would allow for swing-up and swing-down of the rod [5]. Learning-based con-
trollers such as imitation learning and reinforcement learning can also be tried. Some next steps would be com-
paring simulation physics with real-life physics. More accurate physics models can be derived with optimization 
or learning-based system identification techniques.  
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