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ABSTRACT 

Current prosthetic arm technologies are often difficult to use intuitively by amputees, require invasive surgical 
procedures, and can be extremely costly with prices ranging from $20,000 to $80,000. To address these chal-
lenges, the engineering goal of this project aims to design a smart, low-cost, mind-controlled transhumeral 
prosthesis by integrating the brain-interfacing capabilities of electroencephalography (EEG), the economical 
means of 3D printing technology, and gesture-detecting attributes of an accelerometer-gyroscope. Single-chan-
nel brain signals are transmitted through Bluetooth to be interpreted by a novel EEG decoding algorithm and 
head gestures from the inertial measurement unit actuate movement within the arm. Force sensitive resistors 
were employed to regulate force control in real-time to optimize grasp type. An LCD screen is integrated within 
the arm’s design to display the type of touch it is exerting on an object. The arm itself was printed with an 
original design utilizing PLA plastic filament making it extremely durable and lightweight. After thoroughly 
testing the prosthesis, the novel EEG decoding system boasts an accuracy of 94.7% and a user cognition to 
machine delay of 1.64 + - 0.37 seconds. The inertial measurement unit system recognizes user gestures with a 
delay of .136 seconds. With a bill of materials approximately $375 USD and ability to be moved in 4 degrees 
of motion, this novel upper limb prosthesis serves as a promising alternative to existing units on the market. 
The algorithms developed within this project have a wide range of use within other brain control interface 
projects. 

Introduction 

Upper limb amputations are catastrophic for individuals, leaving intense functional and mechanical disabilities. 
These amputations severely reduce the quality of life for affected individuals and restrict daily activities. Esti-
mated globally, 65 million people live with limb amputations, with 40% of cases resulting in upper limb am-
putations, and 1.5 million people undergoing amputations every year. The factors that cause limb amputations 
include but are not limited to: state specific examples of what causes limb amputations – accidents, diseases, 
etc. In the US alone, approximately 1.7 million people live with a form of limb loss, which translates to 1 out 
of every 200 people.  Compared to lower limb loss, transhumeral extremity amputation makes up about 6% of 
the worldwide amputee population (3 million people) and 3% of the US amputee population (41,000), which 
often results in scientists to overlook this area of research for future development.  Although prosthetic limbs 
have existed since the 16th century, and despite advancements in intellectual dexterity, durability, and flexibil-
ity, current technologies and solutions lack affordability. Currently, two thirds of the amputee population, and 
80% of all arm amputees live in low resource settings such as rural areas of Cambodia and India with limited 
access to forms of support or rehabilitation. Low resource settings are prone to fatal accidents and injuries, 
increasing risk of amputations with limited healthcare. (Maduri, 2022) 

Upper limb amputation procedures tend to be invasive and require precise, complex surgery. Medical 
procedures serve to reassign nerves in cohesion with the prosthetic, allowing the amputee to control the pros-
thetic with their minds, improving their quality of life and daily activities. The costs of these transhumeral 
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prosthetics range from $10,000 to $30,000. The John Hopkins Applied Physics Laboratory has developed a 
mind controlling prosthetic arm, consisting of 26 joints and capable of lifting 45 pounds. This arm is controlled 
by brain signals, with six microelectrode arrays inside the brain in various areas. According to the John Hopkins 
researchers, their limb costs a couple thousands of dollars. Surgical implantation connects the arm to the torso, 
where connections are rewired through the nerves allowing the readings of raw electrical signals to later be 
converted into commands. However, this method is extremely invasive, welcoming the path for further com-
plications such as heart disease, paralysis, and deadly infection. Surgical implantation also does not address the 
economical means of the patient, which rules out the possibility to serve low income areas. Another method of 
control consists of using non-invasive sensors to collect brain activity, which will ultimately be decoded into 
commands for the robotic arm. Recent procedures have made use of electroencephalography (EEG) and elec-
tromyogram (EMG). Users would be able to control the prosthetic arm with their mind or allow neighboring 
muscle data to direct the arm. These options have proven to be extremely cost effective, with EEG prices starting 
at just $100 USD. These EEG sensored arms provide high accuracy and the luxury of flexibility when feeling 
discomfort for the user. The profound connection between the brain and the prosthetic is performed via brain 
computer interfaces. Brain Computer Interfaces (BCI) is an emerging field, where an external source and the 
brain harness a direct communication pathway. Forms of electrical, magnetic, and other physical manifestations 
of brain activity are collected and translated into commands on an external device, through signal processing 
and classification of data patterns. The most common, non-invasive data collection method is through an EEG, 
electrodes are placed on the head, exposing the oscillatory activity within the frequency bands. These neural 
oscillations are used as indicators for certain neurological phenomena, including stages of sleep, memory, pro-
cessing, and abnormal functions.  

The project discussed in the paper aims to develop a smart, low-cost, anthropomorphic, prosthetic arm 
by integrating the brain computer interfacing applications of an EEG, precise movement of a gyroscope accel-
erometer, and the ultra-low cost advantages of a 3-D printer. (Maduri 2022) 
 

Materials and Methods 
 
Model Design 
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Figure1. An overview of the of the prosthetic software systems diagram 
 
EEG data is collected from the MUSE EEG Headset, a wearable device designed to provide real time feedback 
on brain activity. Via Bluetooth, this data is sent to the Arduino Mega, and is filtered and read through machine 
learning algorithms. When the machine learning algorithms detect a beta wave in the binary data, the Arduino 
sends commands to servos, to actuate grasp movement in the hand. Vertical and horizontal movement is de-
tected through the MPU3050 gyroscope and accelerometer. Data from the MPU6050 is decoded through code 
from the Arduino which is translated to X, Y, and Z movement through commanded sensors.  

TinkerCad online modeling software was used to create the original 3D model of the prosthetic arm. 
This model consisted of 5 finger pieces (including a thumb), a palm, a wrist, and forearm. Each finger, except 
the thumb which has only 1 divot, has 3 divots to allow for flexion/extension of the hand piece. The wrist and 
forearm pieces are essentially empty boxes with covers to store both servo motors. The front, or head, of each 
piece has a hollowed out rectangle to allow for easy attachment to prior pieces of the entire model. Additionally, 
the forearm piece holds a single Arduino Uno which serves as the central processing unit (CPU). All pieces of 
the arm were sliced through Cura and printed on a Ender 3 V2 Neo 3D Printer.  
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Figure 2. 3d printing of prosthetic arm 
 
Preprocessing  
 
The data was split into training (60%), validation (20%), and test sets (20%) once 30 CSV files from the MUSE 
Headset, an EEG headset that provides real-time feedback on the user’s brain activity. The MUSE data is sent 
to a Bluetooth Module hand attached to the back of the MUSE headset, which is then sent to the Arduino Mega 
Microcontroller Unit. Outlier detection algorithms were used based on a mixture model, a model used to repre-
sent data in various subsets and groups. Outliers were determined if the datapoint was considered farther than 
the fitted distributions. With EEGs proving difficulties in single distributions, a mixed model was used, com-
bining distributions for a more accurate representation. To determine the noisiness of the data, the Power Spec-
trum Density (PSD) was plotted. The PSD uses a Fast Fourier transform along a variation of signals to compute 
the frequency range. The PSD showed the noisiness of the data, with high peaks in the upper frequencies. The 
data was then epoched into segments of 3 seconds.  
 
Spatial Filtering and Feature Extraction  
 
Spatial filtering rises to importance due to the poor spatial resolution of the EEG, which is the result of the 
thousands of active neurons. Raw EEG signals are high dimensional, proving unsuitable for direct input and 
require dimensionality reduction. Another reason to prohibit the use of raw EEG data as a main feature vector 
is due to the additional amount of data needed as the dimension grows to generate a high accuracy (known as 
the curse of dimensionality). Thus, specific features of the EEG are extracted. Spatial filtering linearly combines 
signals from a multitude of electrodes, increasing the signal-to-noise ratio, a measure used to compare the de-
sired signal to the amount of background noise, and ultimately makes it easier to identify the origin of the signal. 
For this project, a spatial-frequency filter extracted from the Common Spatial Pattern (CSP) algorithm was 
used. The general framework is to maximize the variance of one condition while minimizing the other, which 
is performed by breaking a multivariate signal into additive components. This filters the data, clearly illustrating 
the features with the most variance and those with the least. First, band-pass filters are applied to the raw EEG 
data to acquire beta wave frequency bands. The CSP algorithm is then applied to every filter result to extract 
the desirable spatial features. Feature selection algorithms are used to select the most prominent features among 
the spatial filters.  
 
Classification 
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Previous literature of BCI creations revolve around using motor imagery or eye blinking patterns as key classi-
fiers for commands (Bhuyan, 2014). However, this project is one of the first to leverage data from attention 
bursts in beta waves. In many BCI’s the most used classifiers are discriminant classifiers, specifically Linear 
Discriminant Analysis (LDA) classifiers. LDAs are generally used due to their simplicity, making them excep-
tional at generalizing new data. Another known classifier, a Support Vector Machine (SVM) was used due to 
its generalization abilities and resistance to the curse-of-dimensionality. The goal of a LDA is to find a projec-
tion vector that maximizes the separability of the feature vectors. Since this prosthesis was coded on an Arduino, 
original algorithms were developed. Inspired by the LDA algorithm, the algorithm projects the multidimen-
sional vector into one dimension. The difference between the projections are maximized while interassociations 
are minimized.  Two classes are assumed to distribute with different means but identical covariance matrices. 

Support Vector Machines learn features by classifying them and constructing a linear hyperplane, 
which dissociate classes. Properties and ideas from the support vector machine were taken. The general benefit 
of our algorithm is designed for multi-class classification.  It has the ability to be a linear classifier, but also 
perform non-linear classification systems by constructing hyperplanes in higher dimensional space. This allows 
data that cannot linearly separate to detach in original input space. A discrimination is then found in the hyper-
plane between the classes, and combined using a maximization rule. This is performed using a Gaussian kernel, 
which uses a kernel function to map and data and compute inner-product between two vectors. Once the spikes 
of concentration in the beta waves are classified, they are sent to the servos to control the grasps and hand 
motions of the prosthetic.  
 

 
 
Figure 3. Machine Learning Hierarchy  
 
Gyroscope/Accelerometer  
 
The movement of the robotic arm is controlled by a gyroscope/accelerometer. The gyroscope and accelerometer 
were merged to find the precise angular position of an object. An artificial intelligence algorithm was used to 
assess the head gesture data and train the arm. The result would be human head movement and the robotic 
prosthesis moving parallel in synchronization. The algorithms were developed on an Arduino Uno with the 
MPU-6050 IMU board. The MPU-6050 combines a 3-axis gyroscope and a 3-axis accelerometer together with 
a Digital Motion Processors. The gyroscope has a full scale range of  ±250, ±500, ±1000, and ±2000°/sec dps 
(degrees per second) and the accelerometer with ±2g, ±4g, ±8g, and ±16g. The MPU-6050 is placed on the 
MUSE headset. Head movements were detected through the sensor in terms of acceleration and angles, corre-
sponding to the arm’s speed and tilts. Combining gyroscope and accelerometer data allowed us to calculate the 
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angle with respect to a specific axis. The gyroscope picks up head gesture data and communicates with the main 
Arduino board. The data received by the Arduino is processed through the artificial intelligent algorithms, with 
the output being commands sent to servo motors for movement.  

To process the raw data, various libraries and geometrical calculations were used to decipher exact 
angles of gestures. The Kalman filter was used to recalculate angles and compare with world frames. The frame 
of the arm is on an (X,Y, Z) axis. The world frame was considered ideal, and sensor displacement was calculated 
along the (X,Y,Z) axis, with the servo angle calculated. The prosthesis moves along the X,Y, and Z axis.  Each 
motor is confined to its specific rotation, a y-axis motor can only perform y-axis rotations. The arm is made up 
of 6 servo motors with 2 for each axis, each controlling 180 degrees of movement which are defined to their 
axis rotation. To find the displacement angle of the human hand, geometrical calculations would be used to 
transform the raw values of the sensor. The force sensitive resistors are used in a closed loop feedback system 
on the Arduino using various algorithms.  
 

Results 
 

 
 
Figure 4. Variation of brain waves in the data set  
 
The novel EEG decoding system boasts an accuracy of 94.7% which is considered an industry leading standard 
(Bhuyan, 2014). The figure below demonstrates the training algorithm's ability to decipher spikes in attention 
utilizing beta wave detection from the 30 CSV files. After multiple training trials the accuracy reached 100% 
for all beta waves of varying frequencies; 13 Hz, 24 Hz, and 30 Hz were used as they are part of the range of 
frequencies of beta waves. The graph shows the results for the various beta waves, to confirm accuracy of all 
possible detections. Beta waves frequency band was used since it contains the most relevant information for 
BCI applications. It also has the most variability which is necessary to identify the time period when the user 
enters a state of concentration.With the standard deviation at 5% there is low variability between test subjects, 
but this is likely to change with more data points and test subjects. The algorithm can be generalized to more 
people and additional data points for further research. 
 The overall cost of the arm comes down to $375 USD, which is 99.29% percent cheaper than what is 
currently available on the market. The use of 3D printing and PLA filament is what brought down most of the 
bill of materials. PLA filament is derived from renewable resources, and is known for its biocompatibility 
properties making PLA filament a good alternative.  
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Figure.5. Breakdown of weight, degrees of freedom, actuators, grasp speed, and cost of prototype compared to 
current prosthetics in the market 
 

 
 
Figure 6. Scatterplot of weight and grasp speed of arm 
 

Above is a comparison of the features of our proposed prosthesis prototype and others developed in 
commercial or research settings. Weight, degrees of freedom, actuators, grasp  speed, and cost were all taken 
into account during this analysis. Our prosthetic has a high accuracy of function with a low bill of materials, 
ultimately lowering the manufacturing costs. This prosthetics proves high use in low resource areas, when pro-
ficiency is needed the most.  

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 7



Discussion of Results 
 
The final design was successful in achieving the objective of providing a full-fledged pipeline that applies 
techniques for data collecting, processing, analysis, and output evaluation, while also demonstrating its cost-
effectiveness. The complete solution, for instance, makes it possible for a user to reasonably and accurately 
control a prosthetic device using inputs from their brain. The proposed approach achieves the basic goal despite 
the design difficulties that a real-time pipeline targeting frequently extremely noisy data can carry. We were 
able to create a functional prototype that could improve a disabled person's mobility by fusing the idea of mind-
controlled open-close motion with the accuracy of EEG signal processing. Current state-of-the-art technologies 
continue to be priced high in the market (Maduri, 2022). Our research demonstrates the possibility of creating 
a low cost EEG-controlled prosthetic prototype that can serve millions of people in need, particularly those in 
underdeveloped communities without the means to afford the current market alternatives which are costly. 
Limitations of this prosthetic are related to the movement, as steps are being taken to make it smoother and 
more cohesive. Other low-cost, 3D printed prosthetics have used EMG signals, which utilize muscle sensors 
for motion. Further research can be performed to improve these mechanisms, integrating soft and hard limb 
properties, in an effort to bring a prototype to a fully commercialized and cutting edge go-to-market solution.  
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