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ABSTRACT 
 
Traumatic Brain Injury (TBI) is a heterogenous injury and a leading cause of long-term deficits and mortality in the 
United States. In order to improve TBI outcomes, an effective prognostication tool is necessary. Standard imaging 
modalities, computerized tomography (CT) and magnetic resonance imaging (MRI), have a limited ability to predict 
TBI outcomes. Currently, advanced MRI techniques are being studied for their efficacy. The aim of this study is to 
determine whether a multimodality MRI approach is superior to a single modality MRI approach in determining clin-
ical outcomes of TBI. A secondary data analysis was conducted on TBI data obtained from 31 rat brains; 3-day MRI 
data in the Ipsilateral Perilesion Cortex and 28-day Behavioral Test data (Novel Object Recognition, Barnes Maze, 
and Open Field Test Total Distance and Total Act Time) were analyzed. A Best Subset Analysis was conducted for 
each of the behavioral tests. Three out of four behavioral tests show improved adjusted R2 values for models containing 
more than one imaging modality. A Multiple Linear Regression Analysis was then conducted on the MRIs from the 
highest predictive model determined by Best Subset Analysis. This analysis shows that a multimodality MRI approach 
can explain 25.2% of the variability in behavioral outcomes in the Novel Object Recognition Test with a P value of 
0.012. Thus, the study demonstrates that a multi-modality MRI approach has a potential for effectively diagnosing 
and predicting TBI outcomes. 
 

Introduction 
 
Traumatic Brain Injury (TBI), a heterogenous injury, is one of the leading causes of death and deficits in learning, 
memory, balance, vision, and smell in the United States. Around 50,000 people in the United States die annually from 
Traumatic Brain Injury, and 235,000 annual hospital admissions are attributed to TBI (Shah et al., 2020). Predicting 
TBI outcomes in patients is challenging for clinicians due to the heterogeneous nature of TBI severity and underlying 
mechanisms for varied outcomes. Standard structural magnetic resonance imaging (MRI) can provide information on 
the location and extent of mechanical damage and water accumulation (edema) in brain tissue but is limited in its 
ability to predict clinical outcome (R. Koehler, personal communication, February 16, 2023). Use of multiple modal-
ities of advanced magnetic resonance imaging (MRI) may help to better diagnose and predict outcomes in patients 
with TBI. The purpose of this paper is to examine the efficacy of a multi-modality MRI approach to classify TBI 
severities. The paper will also demonstrate the ability of a multi-modality approach to provide diverse and comple-
mentary information to accurately predict acute and chronic TBI outcomes. 
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Review of Literature 
 
Background  
 
TBI occurs with varying severities, usually classified as mild, moderate, and severe in a research setting. Symptoms 
and outcomes vary in patients depending on the severity of TBI, but also vary from patient to patient with the same 
injury severity (Pugh et al., 2021). Clinicians analyze patients' symptoms to assess TBI severity and predict TBI out-
comes, but many of these symptoms are “unreliable and/or nonspecific” (Lunkova et al., 2021). Thus, neuroimaging 
techniques, such as MRI and computerized tomography (CT), are utilized to evaluate TBI. But standard imaging using 
T1- and T2- weighted techniques is insufficient for analyzing TBI. More advanced MRI techniques have been devel-
oped, including susceptibility-weighted imaging (SWI), diffusion weighted MRI (dMRI/DWI), perfusion MRI, amide 
proton transfer-weighted MRI (APTw), arterial spin labeling MRI (ASL), functional MRI (fMRI), and resting state 
fMRI (rs-fMRI) (Zhang et al., 2017) (Koerte et al., 2016).  SWI reveals hemorrhages in the brain, ASL MRI measures 
cerebral blood flow (CBF), diffusion-weighted MRI (DWI) and diffusion tensor imaging (DTI) identify edema and 
axonal injury, APTw is sensitive to tissue pH and protein abundance and differentiates between different types of 
stroke due to hemorrhage and occlusion of an artery (Zhang et al., 2017), fMRI measures the local changes in the 
concentration of deoxygenated hemoglobin in the tissue resulting from the changes in cerebral blood flow and oxygen 
consumption when neurons are activated while performing a task, and resting state fMRI (rs-fMRI) measures changes 
in local deoxyhemoglobin during spontaneous changes in activation of connected neural networks under resting con-
ditions (Koerte et al., 2016) (R. Koehler, personal communication, February 16, 2023). Thus, each of these MRI 
techniques can inform about unique TBI-related changes in the brain. Whereas neuroimaging techniques can assist in 
diagnosis, their sensitivity and specificity for prognostication for TBI patient outcome remains uncertain. 
 
Classifying Injury Severity 
 
First, a multi-modality MRI approach can distinguish between different phases and severities of TBI. Several studies 
show that injury severities indicated by MRI correlate with TBI outcomes as validated by behavioral tests and bi-
omarkers. 
 
Acute and Chronic Phase of Injury 
 
A multi-modality approach should be employed because specific MRIs are used to classify acute and chronic phases 
of injury. During the acute phase of TBI, CT is utilized as it is more sensitive to acute TBI-related structural changes 
given its ability to detect “its ability to detect skull fractures and large intracranial hemorrhages” (Edlow & Wu, 2012) 
leading to displacement of healthy tissue (R. Koehler, personal communication, February 16, 2023). In addition, dur-
ing the acute phase, DWI helps detect axonal injuries caused by shear forces, intracranial bleeding, and edema. On 
the other hand, for subacute and chronic stages of TBI, Zhang et al. (2016) note that conventional MRI is used as it 
provides more in-depth information regarding white matter changes and small contusions seen in the brain during 
these stages. Fractional anisotropy (FA) signals in DTI, an extension of DWI, can provide information on preferential 
direction of water movement in white matter sheaths in both the acute and chronic phases of TBI; an increase in FA 
is linked with the acute phase, while a decrease in FA is associated with the chronic phase as the myelin sheaths lose 
integrity (R. Koehler, personal communication, February 16, 2023). Similarly, rs-fMRI can provide information on 
neural network connectivity in the acute and chronic phases of TBI.  
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Degree of Injury 
 
Specific MRI modalities are utilized to identify different severities of injury in TBI (Zhang et al., 2016). For mild 
severity, DTI shows associated changes in FA and mean diffusivity (MD) values of water diffusion averaged over all 
3-D directions (R. Koehler, personal communication, February 16, 2023). Individuals with mild TBI are found to have 
low MD values and high FA values. Moreover, fMRI detects changes in the prefrontal cortex, the cerebellar tonsil, 
and the culmen, which is often where mild TBI-related changes occur. fMRI also reveals how patients with mild TBI 
show variable increases in neuronal activation when engaging in difficult, memory-related cognitive tasks. In addition, 
rs-fMRI can identify mild TBI in patients, without the use of T1- or T2- weighted MRI data, as its “imaging highlights 
the importance of baseline functional connectivity in cognitive deficits experienced by TBI patients” (Zhang et al., 
2016). In contrast to mild TBI, moderate and severe TBI are typically characterized by structural changes, which can 
be detected by CT and conventional MRI. Specifically, CT is used as an initial diagnostic tool for detection of mod-
erate and severe TBI associated structural changes and damage compared to mild TBI. In DTI, moderate and severe 
TBI is distinguished by overall lower FA values, which indicate disturbances in white matter as water diffusion is less 
constrained in its movement parallel to the axons and myelin sheaths (R. Koehler, personal communication, February 
16, 2023). 
 
MRI Validation of Severity Using Behavioral Tests 
 
In a 2015 study conducted by the Johns Hopkins University School of Medicine, the authors examined multiparametric 
MRI techniques and focused specifically on APTw to correlate with outcomes across different TBI severities in rats 
(Dong et al., 2022). The multiparametric MRI encompassed T1, T2, isotropic apparent diffusion constant (ADC), ASL 
measurements of CBF, and magnetization transfer ratio (MTR) that measures the rate of transfer of nuclear magnetic 
spin between protons in free water and macromolecules like myelin (R. Koehler, personal communication, February 
16, 2023). In this study, the injury was induced in the rats using the Control Cortical Impact (CCI) machine. To assess 
neurobehavioral outcomes in rats, the sucrose preference test, Barnes maze, and modified neurologic severity score 
(mNSS) were employed. The sucrose preference test can indicate anhedonia, the Barnes Maze test correlates with 
spatial memory and learning, while the mNSS evaluates motor, sensory, reflex, and balance skills. Dong et al. (2022) 
observed that MRI results in the injury core and perilesion cortex were found to be predictive of TBI severity as 
indicated by the behavioral outcomes. Specifically, at one hour and one day post-TBI, a decrease in APTw signals in 
the injury core was found in rats with moderate and severe TBI; these decreased APTw signals negatively correlated 
with the modified neurologic severity score (mNSS) at 28 days. Furthermore, at one-day post-TBI, the APTw signal 
showed a positive correlation with the sucrose test and a negative correlation with Barnes maze escape time over the 
ensuing weeks. Conversely, in the perilesion cortex, an increase in the APTw signals was seen in moderate and severe 
groups at three days. This signal showed a positive correlation with the 28-day mNSS and a negative correlation with 
the sucrose test. Therefore, the study shows how early, one-day APTw signals in the injury core and three-day APTw 
signals in the perilesion cortex can correlate with injury severity and neurologic dysfunction, anhedonia, and memory 
decline. Overall, this study demonstrates the ability of multiparametric MRI, including APTw, in differentiating re-
covery of different characteristics of neurobehavioral deficits. 
 
MRI Validation of Severity Using Biomarkers 
 
Another study on serum biomarkers illustrates how these biomarkers can identify severities of TBI, as noted by MRI 
findings (McMahon et al., 2015). Conducted on 215 patients, 83% of whom had mild TBI, 4% moderate, and 12% 
severe, the study looked at the ability of glial fibrillary acidic protein and its breakdown products (GFAP-BDP) to 
diagnose TBI severity, as noted by CT and MRI findings. GFAP-BDP, a brain astrocyte cell protein released into the 
blood after TBI, was able to sufficiently identify intracranial injury with 81% accuracy, as shown by the radiographic 
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imaging. With a 95% confidence interval, GFAP-BDP had a “very good predictive ability” and showed “significant 
discrimination of injury severity” (McMahon et al., 2015). Given the ability of the multimodality MRI approach in 
identifying different TBI severities, this strategy should be employed to diagnose and prognosticate outcomes in pa-
tients with TBI. 

 
Diverse Metrics and Complementary Information 
 
In addition, by combining multiple MRI techniques, the number of metrics being measured is diversified and will 
reveal complementary information about the brain post-TBI, which is why a multi-modality approach could be more 
advantageous than employing a single imaging modality. This is particularly important because TBI is a heterogene-
ous disorder affecting gray and white matter to different degrees among patients (R. Koehler, personal communication, 
February 16, 2023). 
 
Diverse Metrics 
 
Conventional MRI methods such as T1 and T2 weighted MRI can provide important metrics that may not be detectable 
through the use of advanced MRI, as shown in a study conducted on 46 United States Military veterans (Gordon et 
al., 2019). Diffusion MRI is used to identify axonal injuries by looking at abnormalities in the white matter of the 
brain, where these injuries are most likely to occur after TBI. However, some axonal injuries and myelin changes 
resulting from TBI occur outside of the white matter of the brain, most notably the cortex. Diffusion imaging is not 
able to detect axonal injuries outside of white matter, so T1 and T2 weighted MRI were utilized in this study to provide 
additional information on the brain cortex myelination. 

Other advanced MRI methods such as SWI, fMRI, and DTI can also enhance the quality of data collected 
following TBI as they each provide unique metrics. SWI looks at microhemorrhages. It is also sensitive “to venous 
blood … and iron in the brain” (Koerte et al., 2016). Furthermore, task-based fMRI is a method that measures changes 
in blood flow in response to the subject engaging in a cognitive task. In resting-state fMRI, changes in blood flow are 
measured while the subject is not performing any cognitive tasks (Lunkova et al., 2021). Also, DTI measures diffusion 
of water molecules and indirectly measures changes in tissue microstructure such as axonal injury. Four variables, 
mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and fractional anisotropy (FA), are analyzed in 
DTI; “reduced FA is purported to reflect microscopic damage to myelin sheaths or axon membranes and/or axonal 
packing density” (Koerte et al., 2016). Each of these methods looks at different functional and structural changes in 
the brain as a result of TBI, providing varied information regarding the pathophysiology behind TBI and its resulting 
outcomes. 
 
Complementary Information 
 
A multimodality approach also provides complementary, “mutually informative” data about the brain’s pathophysio-
logical processes (Hao et al., 2011). In an experiment to study pinocembrin drug efficacy, four MRI signals from 
functional and molecular MRI techniques were identified as successful biomarkers of TBI and TBI recovery (Wang 
et al., 2017). The authors state that “to the best of our knowledge, this is the first study to use multiparameter MRI to 
assess TBI-induced secondary brain injury over time” (Wang et al., 2017). The four MRI signals used in the study 
were ASL, APTw, ADC, and MTR. During the experiment, pinocembrin, a natural extract, was found to combat the 
effects of neuroinflammation stemming from the secondary phase of TBI. The authors subjected some of the rats (TBI 
rats) to controlled cortical impact. Next, pinocembrin was administered to a subset of rats, which showed recovery on 
behavioral testing, as opposed to the TBI rats not given pinocembrin. MRI brain signals were also measured to corre-
late with pinocembrin-induced recovery. In rats that were given pinocembrin, the TBI-induced changes in ASL-
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derived CBF, APTw, ADC, and MTR levels were mitigated. Thus, the use of the ‘multiparameter’ MRI with four 
signals could identify drug treatment effects on neuroinflammation and behavior recovery in the rats. 

Another study analyzed MRI and DTI biomarkers that could be used for studying TBI in ferrets that under-
went controlled cortical impact (Hutchinson et al., 2016). T2 MRI and DTI changes during the acute phase of TBI 
were studied. The authors found that T2 MRI and DTI signals should be taken together as they provide complementary 
information about “pathophysiology and cellular alterations that emerge during the acute time period” (Hutchinson et 
al., 2016). Strong statistical correlations between T2 and TR values were found in most lesioned areas but showed 
varied data in other areas. Similarly, T2 and FA also showed a statistically significant correlation with one another. 
When looking at individual areas, T2 and TR as well as T2 and FA provided complementary information to one 
another. 

In a different study, MRI, fMRI, and DTI were identified as potential biomarkers for predicting TBI out-
comes, and a combination of these techniques was proposed to improve outcome prediction (Irimia et al., 2012). 
Predominantly, clinicians use CT and MRI together to assess TBI patients. Although this combination of techniques 
has improved the assessment of TBI patients, it still lacks specificity in certain areas. Other advanced neuroimaging 
methods like DTI and fMRI fill in these gaps by measuring structural and functional abnormalities in the brain. By 
using CT, MRI, and advanced neuroimaging techniques together, researchers can combine volumetric measurements 
with structural and functional measurements of the brain to reveal pathological processes that occur following TBI 
and improve the prediction of outcomes. 

Based on the results of these studies, a multi-modality approach is shown to provide varied, complementary 
information and should be used more widely to assess TBI.  
 
Predicting TBI Outcomes 
 
Additionally, data obtained from multiple MRI techniques can help predict TBI outcomes, including acute and chronic 
cognitive and motor deficits.  
 
Acute Cognitive Outcomes 
 
The ability to predict acute cognitive outcomes in TBI patients was studied by measuring diffuse axonal injury on 
MRI (Humble et al., 2018). These outcomes were measured using the FIM, or hospital-discharge Functional Inde-
pendence Measure, score. The study found that diffuse axonal injury can only accurately prognosticate short-term 
functional outcomes, not long-term. The study used a modified FIM score which is “a total of self-feeding, locomotion, 
and expression scores” (Humble et al., 2018) obtained at discharge. As observed by the data from 240 patients, lower 
FIM scores, which indicated worse cognitive outcomes at discharge, were associated with diffuse axonal injury on 
MRI.  
 
Acute Motor Outcomes 
 
Another study aimed to identify MRI biomarkers that correlate with functional acute motor outcomes 24 hours after 
TBI (Wang et al., 2021). T1, T2, DWI, and DTI MRI techniques were used at 24 hours. During this same period, gait 
analysis, which looked at stride and step length, was also conducted. An increase in lesion size correlated with a 
decrease in stride and step length with P = 0.03 and P = 0.02 respectively; an increase in midline shift of the brain 
hemispheres also negatively correlated with stride and step length, with P=0.03 for both. The data suggest that MRI 
can predict reduced motor skills at 24 hours post-TBI. 
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Long-term Cognitive Outcomes  
 
Structural MRI was used on 63 patients one year post-injury across all severities to prognosticate chronic TBI out-
comes with neuropsychological testing (Levine et al., 2013). It was found that in “tests of speeded attention, working 
memory, and verbal learning and memory,” the results on MRI “robustly covaried with a distributed pattern of volume 
loss over temporal, ventromedial prefrontal, right parietal regions, and cingulate regions” (Levine et al., 2013). These 
correlations in outcomes were seen in patients with both focal and diffuse injuries on MRI.  In a similar study, 45 ice 
hockey players with acute concussion were studied for persistent post-concussive symptoms six days post TBI 
(Shahim et al., 2020). Serum neurofilament light (NfL) correlated with outcomes, as indicated by Glasgow Outcome 
Scale Extended (GOSE) score, and MRI changes in DTI. A GOSE score is a standard method for the evaluation of 
cognitive outcomes in patients with TBI. Serum NfL correlated with long-term outcomes at 90 days (low GOSE 
scores). Shahim et al. (2020) concluded that “Serum NfL distinguished patients with TBI from controls at 30, 90, and 
180 days with high accuracy and showed an association with functional outcome.”  
 
Long-term Motor Outcomes  
 
MRI biomarkers that correlate with long-term functional outcomes in pigs at 12 days post TBI were identified (Wang 
et al., 2021). At 12 days post TBI, T1, T2, DWI, and DTI MRI techniques were used and gait analysis was conducted. 
An increase in lesion size and midline shift negatively correlated with stride and step length at 12 days, suggesting 
that MRI can predict reduced motor skills at 12 days post-TBI. Another study was conducted on 391 patients with 
acute mild TBI at two weeks and six months post TBI for long-term outcomes (Palacios et al., 2022). White matter 
changes on DTI were analyzed using four parameters, AD, FA, MD, and RD. In order to assess long-term outcomes, 
patients were evaluated with a GOSE score. AD and MD values at two weeks correlated with long term deficits at 
six-months, as noted by a GOSE score less than eight. Palacios et al. (2022) state that “higher AD and MD at two 
weeks are both independently associated with better long-term outcome.” A multi-modality neuroimaging approach 
thus has the ability to provide key information on TBI outcomes, both short term and long term, allowing for improved 
prognostication.  
 
Counterargument 
  
There are limited studies conducted on a multi-modality MRI approach to diagnose and predict TBI outcomes, and 
many of these studies were conducted on animal models or a small sample size of human subjects. However, a multi-
modality MRI approach has several advantages over a single modality approach given its superior ability to provide 
a range of information about TBI and to predict TBI outcomes.   
 
Conclusion 
 
Traumatic Brain Injury is a widespread problem affecting diverse groups of people from varying age groups. TBI can 
cause long-term debilitating effects. Although there are various imaging techniques available including advanced MRI 
for diagnosis of TBI, there is still a limited ability to effectively prognosticate outcomes for patients. Without an 
accurate diagnosis and prognosis, patients may not get the proper care in a timely manner. As demonstrated by several 
studies, a multi-modality MRI approach has high potential for diagnosing and predicting acute and chronic TBI out-
comes given its ability to differentiate between severities and provide a diverse set of information. In the future, the 
principles of using a multi-modality MRI approach can be applied to various other neurological conditions. 
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Methods 
 
This study aims to test whether a multimodality MRI approach is superior to a single MRI modality to predict TBI 
outcomes. Secondary data analysis was performed on data obtained from a prior study that sought to observe the 
efficacy of TPPU (a potent and highly selective soluble epoxide hydrolase inhibitor) on reducing neuroinflammation 
after TBI in rats. From the data set, 3-day MRI data in the Ipsilateral Perilesion Cortex and 28-day Behavioral Test 
data were analyzed. For this study, the MRI data from all experimental groups (Sham, Moderate, and Moderate with 
TPPU) were combined to mimic a heterogenous human population. 

Data were obtained from a research study conducted by the Department of Anesthesiology and Critical Care 
Medicine, Johns Hopkins University School of Medicine. The data set contains behavioral test data (Novel Object 
Recognition, Barnes Maze, and  Open Field Test Total Distance and Total Act Time) at 28 days post Controlled 
Cortical Impact (CCI) Injury and MRI data (T2, T1, CBF, APTw, ADC, and MTR) for 1 hour, 3 days, 7 days, and 28 
days in five regions of the brain: Core Area, Ipsilateral Perilesion Cortex, Contralateral Cortex, Ipsilateral Hippocam-
pus, and Contralateral Hippocampus. The original data set had 31 rats with complete MRI and behavioral data which 
were selected for this study. The statistical analysis was conducted using the SigmaPlot software.  

For each of the behavioral tests, individual Linear Regression analysis was conducted between each of the 
six MRI modalities and the behavioral test. Next, a Best Subset Analysis was conducted for each of the behavioral 
tests. The Best Subset Analysis produces models for all possible combinations of the independent variables. If the 
number of variables is k, there will be 2k models produced. However, in Best Subset Analysis, only the best model for 
one variable, two variables, etc. to k variables is considered leaving only k number of models to compare. After 
conducting the Best Subset Analysis, the model with the highest adjusted R2 value for each behavioral test was iden-
tified. The MRIs in these models were used as independent variables in a Multiple Linear Regression analysis to 
evaluate their predictive value of each behavioral test; for Barnes Maze a simple Linear Regression, not a Multiple 
Linear Regression, analysis was conducted because the best subset model with the highest adjusted R2 had only one 
MRI variable. 
 

Results 
 

Individual Linear Regression analysis between each of the six MRI modalities shows a strong covariance 
between APTw and CBF (Table 1). Individual Linear Regression analysis between each of the six MRI modalities 
and behavioral tests were also conducted (Table 2). The MRI modalities are ranked in predictive order for each be-
havioral test. 

Next, the Best Subset Analysis identified the six models with the best predictive value for TBI outcomes for 
each of the behavioral tests (Table 3). Each of the best subset models for a particular behavioral test has a Mallows’ 
Cp value equal to or less than the number of independent variables plus one (Cp </= k+1). This indicates that each of 
these models is an unbiased predictor of the dependent variable, the behavioral test.  

The R2 value improves every time an independent variable is added to the regression, so a model with the 
maximum number of variables will always have the highest R2 value. To avoid this problem, the best overall model is 
chosen based on the adjusted R2 value. 
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Table 1. Linear Regression Analysis conducted with six different MRI modalities. 
MRI Type ATPw CBF MTR ADC T2 T1 
APTw 1      
CBF 0.784  

0.615  
0.602 

1     

MTR 0.601  
0.361  
0.339 

0.436  
0.190  
0.162 

1    

ADC 0.621  
0.386  
0.365 

0.682  
0.466  
0.447 

0.657  
0.432  
0.412 

1   

T2 0.283  
0.0801  
0.0484 

0.108  
0.0116  
0.000 

0.233  
0.0542  
0.0216 

0.120  
0.0144  
0.000 

1  

T1 0.211  
0.0444  
0.0115 

0.0337  
0.00114  
0.000 

0.634  
0.402  
0.381 

0.263  
0.0691  
0.0370 

0.471  
0.222  
0.195 

1 

Key: 
R  
Rsqr  
Adj Rsqr 

      

 
Table 2. Linear Regression Analysis between each of the six different MRI modalities and the behavioral tests.  

Behavioral Test and Analysis/MRI 
modality 

T2 T1 ADC CBF APTw MTR 

Novel Ob-
ject Recog-
nition 

Linear Regression 
(P & R2 value) 

0.296 
0.0376 

0.419 
0.0226 

0.279 
0.0403 

0.047 
0.129 

0.003 
0.263 

0.027 
0.158 

 Predictive Order 
(1 is the highest) 

5 6 4 3 1 2 

Barnes 
Maze 

Linear Regression 
(P & R2 value) 

0.264 
0.0428 

0.791 
0.00247 

0.142 
0.0727 

0.002 
0.297 

0.009 
0.214 

0.294 
0.0379 

 Predictive Order 
(1 is the highest) 

4 6 3 1 2 5 

Open Field 
Total Dis-
tance 

Linear Regression 
(P & R2 value) 

0.844 
0.00135 

0.394 
0.0252 
 

0.806 
0.00211 

0.453 
0.0195 
 

0.462 
0.0188 
 

0.476 
0.0177 

 Predictive Order 
(1 is the highest) 

6 1 5 2 3 4 

Open Field 
Total Act 
Time 

Linear Regression 
(P & R2 value) 

0.947 
0.000154 

0.531 
0.0137 

0.854 
0.00119 

0.409 
0.0236 

0.405 
0.0240 

0.645 
0.00740 

 Predictive Order 
(1 is the highest) 

6 3 5 2 1 4 
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For the Novel Object Recognition Test, Model 3 which includes APTw, MTR, and ADC has the highest 
adjusted R2 value, 0.252. For the Barnes Maze Test, Model 1 which includes CBF has the highest adjusted R2 value, 
0.273. For Open Field Test Total Distance, Model 2 which includes ATPw and MTR has the highest adjusted R2 value, 
0.008. For Open Field Test Total Act Time, Model 2 which includes ATPw and MTR has the highest adjusted R2 
value, 0.027. The Best Subset Analysis on three out of four behavioral tests shows improved adjusted R2 values for 
models containing more than one MRI modality.  

 
Table 3. Best Subset Analysis for behavioral tests. 

Novel Object Recognition 
Model # Variable Cp Rsqr Adj 

Rsqr 
MSerr T2 T1 ADC CBF APTw MTR 

1 1 -.0229 0.263 0.238 100.585     *  
2 2 0.945 0.286 0.235 100.966   *  *  
3 3 1.462 0.327 0.252 98.718   *  * * 
4 4 3.226 0.333 0.231 101.526  * *  * * 
5 5 5.086 0.337 0.205 104.977 * * *  * * 
6 6 7.000 0.340 0.175 108.961 * * * * * * 
Barnes Maze 
Model # Variable Cp Rsqr Adj 

Rsqr 
MSerr T2 T1 ADC CBF APTw MTR 

1 1 -1.301 0.297 0.273 4327.080    *   
2 2 -0.114 0.319 0.271 4339.886 *   *   
3 3 1.067 0.342 0.269 4352.411 *  * *   
4 4 3.017 0.343 0.242 4510.370 *  * * *  
5 5 5.009 0.343 0.212 4689.272 *  * * * * 
6 6 7.000 0.344 0.179 4882.846 * * * * * * 

 
Open Field Total Distance 
Model # Variable Cp Rsqr Adj 

Rsqr 
MSerr T2 T1 ADC CBF APTw MTR 

1 1 -1.356 0.024 -0.010 5434.283     *  
2 2 -.0677 0.074 0.008 5338.292     * * 
3 3 1.181 0.080 -0.023 5503.800   *  * * 
4 4 3.005 0.086 -0.054 5673.780   * * * * 
5 5 5.001 0.087 -0.096 5899.780 *  * * * * 
6 6 7.000 0.087 -0.142 6145.424 * * * * * * 

 
Open Field Total Act Time 
Model # Variable Cp Rsqr Adj 

Rsqr 
MSerr T2 T1 ADC CBF APTw MTR 

1 1 -0.993 0.025 -0.008 627004.634  *     
2 2 -0.763 0.092 0.027 605198.419     * * 
3 3 1.168 0.094 -0.007 625828.160   *  * * 
4 4 3.053 0.098 -0.040 646792.970   * * * * 
5 5 5.038 0.099 -0.081 672253.469 *  * * * * 
6 6 7.000 0.100 -0.124 699155.933 * * * * * * 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 9



A Multiple Linear Regression analysis was conducted using the MRIs identified in the model with the highest 
adjusted R2 value in the Best Subset Analysis (Table 4). The Multiple Linear Regression analysis for Novel Object 
Recognition using the MRI variables APTw, MTR, and ADC has an adjusted R2 of 0.252 and a P value of 0.012. The 
Multiple Linear Regression analysis for Open Field Total Distance using the MRI variables APTw and MTR has an 
adjusted R2 of 0.0267 and a P value of 0.261. The Multiple Linear Regression analysis for Open Field Total Act Time 
using the MRI variables APTw and MTR has an adjusted R2 of 0.00822 and a P value of 0.339. The Novel Object 
Recognition test is the only behavioral test with a significant result from the three Multiple Linear Regression analyses. 
 
Table 4. Multiple Linear Regression for Novel Object Recognition, Open Field Total Distance, and Open Field Total 
Act Time tests. Linear Regression for Barnes Maze test. 
 

Behavioral 
Test (Y) 

MRIs1 
(Xs) 

 Analysis of Vari-
ance 

DF SS MS F P 

Novel Ob-
ject Recog-
nition 

APTw 
MTR 
ADC 

 Regression 3 1294.465 431.488 4.371 0.012 

R2 0.327  Residual 27 2665.373 98.718   
Adj R2 0.252  Total 30 3959.838 131.995   

 
Behavioral 
Test (Y) 

MRIs1 
(Xs) 

 Analysis of Vari-
ance 

DF SS MS F P 

Barnes 
Maze  

CBF  Regression 1 53039.449 53039.449 12.258 0.002 

R2 0.297  Residual 29 125485.325 4327.080   
Adj R2 0.273  Total 30 178524.774 5950.826   

 
Behavioral 
Test (Y) 

MRIs1 
(Xs) 

 Analysis of Vari-
ance 

DF SS MS F P 

Open Field 
Total Dis-
tance  

APTw 
MTR 

 Regression 2 1707596.843 853798.421 1.411 0.261 

R2 0.0915  Residual 28 16945555.739 605198.419   
Adj R2 0.0267  Total 30 18653152.582 621771.753   

 
Behavioral 
Test (Y) 

MRIs1 
(Xs) 

 Analysis of Vari-
ance 

DF SS MS F P 

Open Field 
Total Act 
Time  

APTw 
MTR 

 Regression 2 12004.707 6002.354 1.124 0.339 

R2 0.0743  Residual 28 149472.187 5338.292   
Adj R2 0.00822  Total 30 161476.894 5382.563   

1MRIs chosen from the best subset model with highest adjusted R2 value for a given Behavioral Test 
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Discussion 
 
Based on the results from the Multiple Linear Regression analysis, it cannot be definitively concluded whether a 
multimodality MRI approach is a better predictor of TBI-related behavioral outcomes as opposed to a single modality 
approach. Out of the three Multiple Linear Regressions, only the Novel Object Recognition test has a significant P 
value; its adjusted R2 value is 0.252, which means 25.2% of the variability in the behavior outcome is explained by 
the combined MRI modalities and 74.8% is not explained by the MRI modalities. The latter could be partially due to 
the fact that MRI measurements are only indirect biomarkers of behavior. The other two behavioral tests do not have 
significant P values. Several studies on Traumatic Brain Injury (Irimia et al., 2012) (Wang et al., 2017) (Hutchinson 
et al., 2016) have suggested a multimodality MRI approach is superior to a single modality, but the results of this data 
analysis are not able to support this conclusion. 

This data analysis has a few limitations. The MRI data were collected from rats, which may not translate well 
to clinical settings. The sample size of 31 is very low. Moreover, the MRI data may be affected due to inherent limi-
tations of the technique and positioning of the rat while collecting the data. MRI data varies within a rat brain over 
time and among individual rats. Similarly, there are inherent limitations when collecting behavioral data. Behavior is 
the combination of multiple neurological processes; hence, behavioral data has high variability in measurement. Alt-
hough a multimodality MRI approach needs to be further studied, it has the potential to improve clinical outcome 
prediction in patients with TBI. In the future, the multimodality MRI approach can be expanded to predict not only 
various other cognitive and motor functions post-TBI but also other neurological conditions.  
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