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ABSTRACT 
 
Quantum Computing is a computing framework that takes advantage of unique quantum mechanical properties (such 
as superposition and entanglement) to perform calculations and implement algorithms that could offer exponential 
speed-ups over classical computing. However, in physical implementations of such quantum computers, qubits – the 
fundamental components of these systems – can accumulate errors that must be accounted for. In order to mitigate 
these errors, various quantum error correction (QEC) codes have been developed, including the repetition code and 
surface codes. In this experiment I implement and evaluate three types of QEC codes on the Qiskit simulator to com-
pare their efficacy and applicability in correcting for different kinds of errors. I hypothesize that surface codes, with 
their more effective design and range of correction methods, should perform the best with much lower error thresholds 
and resultant logical error rates. The results support the hypothesis and suggest that surface codes are a viable method 
of implementing scalable error correction in quantum computers. 
  

Introduction 
  
Quantum Computing, in contrast to classical or traditional computing, functions by manipulating qubits. Qubits are 
the basic storage units of quantum information - they are an analog to a classical bit, but are fundamentally different. 
While bits in normal computers can only hold a ‘0’ or ‘1’ state, qubits can hold a spectrum of different states, in a 
superposition of the ‘0’ and ‘1’ state. These states can be represented as any point on a ‘sphere’(which is called the 
Bloch Sphere), as shown in Figure 1. 
 

 
Figure 1. The Bloch sphere 
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Computation with these qubits uses their unique quantum properties - superposition and entanglement - to 
allow combinations of these qubits to perform calculations and execute algorithms that could potentially be much 
faster than classical algorithms (Shor, 1995). Superposition allows qubits to hold states that are a combination of the 
‘0’ and ‘1’ state, allowing qubit systems to represent states that would take exponential amounts of space in classical 
computers. Entanglement is the property that if two qubits share a quantum state, when there is a change to one of 
them, this change is reflected immediately in the state of the other qubit, regardless of the distance separating them. 

Problems such as integer factorisation and unstructured search for large datasets are computationally difficult 
on classical computers. However algorithms for these problems have been developed which could provide exponential 
speedups to these problems on sufficiently large quantum computers - such as Shor’s algorithm for factorisation (Shor, 
1995) and Grover’s algorithm for unstructured search (Grover, 1996). To explore the feasibility of achieving such 
computations and speedups, there is thus much active research into physical implementations of quantum computers, 
quantum algorithms and error correction schemes. 

There are a variety of physical implementations of qubits being pursued. However, the algorithms and anal-
ysis developed for quantum computing are largely independent of the physical implementation. The challenge with 
real applications is performing high-fidelity operations on qubits at speed, as well as scaling this to multiple qubits. 
Due to impurities or small fluctuations in the environment (depending on the physical implementation), the state of a 
qubit can deviate from its intended position, and these errors can increase as time proceeds. These fluctuations in the 
state are called noise and decoherence. Thus, for more complex circuits and algorithms, a form of error-correction is 
needed to protect or correct against such errors (Chatterjee, 2023).  
 

Error Correction 
  
There is a well-developed theory of classical error correction on traditional bits (Chatterjee, 2023), however there are 
some important distinctions between classical bits and qubits that render these codes impossible for quantum systems. 
This includes the no-cloning theorem, which states that we cannot arbitrarily copy the quantum state of a qubit to 
another qubit. This prevents us from simply copying the state of a qubit to correct errors. There is also the destructive 
and irreversible nature of qubit measurement, where the quantum state of a qubit is lost after we measure it. Any 
measurement collapses the state of a qubit into a binary result, which means if we measure any of the qubits in our 
logical circuit, we will destroy its state. Thus, any measurements used must not collapse the state of logical qubits in 
any quantum error code. This can be done through entangling the state of the qubit with other qubits and measuring 
those as a “stabilizer”. In contrast to classical error correction, multiple types of errors can occur, such as bit-flips and 
phase-flips (X and Z errors). Quantum error correction schemes should thus also be able to correct for these multiple 
types of errors. 

The first development that overcame these challenges was the quantum correction code by Peter Shor in 1995 
(Chatterjee, 2023), showing how the state of a quantum system can be extended across multiple qubits through entan-
glement. Extensions to this technique have since allowed the development of further codes that can correct against 
arbitrary errors, provided that physical qubits and operations can be implemented within a certain accuracy threshold. 
 

Experiment 
 
In this experiment, I benchmark the Repetition code and the XXZZ and XZZX Surface codes, and evaluate them on 
the IBM Qiskit simulator to compare their effectiveness in metrics such as their error probability threshold and the 
size (number of qubits), as well as comparing their error thresholds. The error threshold is the error rate of a physical 
qubit beyond which increasing the size of a quantum error correction code does not improve the accuracy (Fowler et 
al., 2012). 
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I hypothesize that surface codes with their more effective design and range of correction methods, would 
perform the best with much lower error thresholds and resultant logical error rates. I also hypothesize the repetition 
code with a simple majority-vote decoding system, would have a threshold of around 0.5 as a physical error rate 
(break-even point). 
 

Methods 
 
The benchmarks were implemented using the Qiskit quantum computing simulator in Python, as it provides an acces-
sible package to implement quantum algorithms and run them on classical computers. It is not feasible to run many of 
these quantum error correction schemes on current physical quantum computers as they are not yet large enough. This 
develops on the work of the ‘qtcodes’ package. In the experiment, I tested implementations of the Repetition Code 
and the Surface Code by applying random Pauli (X) gates to a logical qubit encoded in each error correction code. 
These logical qubits were initialized to a ‘0’ base state, then put through an error channel where the Pauli error is 
applied with a given probability that is denoted by the physical error rate. This models a random error on a physical 
qubit (which varied from 0.05 to 0.2 for the surface codes, and from 0 to 1 for the repetition code). After this, the qubit 
state was measured, and the corresponding decoding scheme was employed (in this case, a minimum-weight matching 
graph decoder) to determine the corrected output state. This was repeated 2048 times for each type and size of code, 
from which the logical error rate was calculated as the proportion of times the resultant logical value matched the 
initial qubit value. This was done for varying code sizes (from a size of 3 up to 9 for the Surface codes, and 3 to 11 
for the repetition codes).  
 

Results 
 
From this process, I obtained the following results of logical error probabilities from physical error rates for each of 
the code types. 
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Figure 2. Logical vs Physical error rates for a range of Repetition code sizes. 

 
 
Figure 3. Logical vs Physical error rates for a range of XXZZ Surface code sizes. 
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Figure 4. Logical vs Physical error rates for a range of XZZX Surface code sizes. 
  

The relation between the logical error rate and the physical error rate depends strongly on the code size d 
(Fowler et al., 2012), which is called the distance of the code: d is the minimum amount of bit-flips or phase-flips 
needed to define one qubit operator in one dimension. For small physical error probabilities, the logical probability is 
also small, and decreases with increasing d (code size) for each type of code. For large physical error rates, the logical 
probability is larger, and increases with increasing code size. 

I found that the Repetition Code, as hypothesized, had the largest error threshold of 0.5 (Figure 2), while the 
Surface Codes had significantly lower thresholds of 0.09 for the XXZZ code (Figure 3), and 0.15 for the XZZX code 
(Figure 4). The simulations also scale with p according to the power law Logical Probability ≈ 𝑝𝑝(𝑑𝑑+1)/2, supporting 

the empirical power law found in (Fowler et al., 2012), and approximated using Logical Probability ≈ 0.02 � 𝑝𝑝
𝑝𝑝𝑡𝑡ℎ
�
𝑑𝑑+1
2  

 

Discussion 
  
By the quantum fault-tolerance theorem, a quantum computer with physical error rates below a certain threshold can 
suppress logical error rates to arbitrarily low levels, and perform general-purpose calculations accurately. Current 
estimates put the fault tolerance threshold for surface codes at around 0.6-1% (Xue et al., 2022), though estimates 
vary. The efficacy of the surface codes at achieving logical error rates below this level (as demonstrated in Figures 2 
and 3), in particular the XZZX code, and their lower error thresholds, suggest they are more useful and effective as 
correction schemes on practical quantum computers. 

Surface codes make use of a lattice or “surface” of qubits connected in a systematic way, composed of ‘ver-
tices’ and ‘plaquettes’ of X and Z operators. By creating an encoding system where the state (when no error occurs) 
is always stabilized, we can detect when the state has changed from the basis state and then correct errors by applying 
a sequence of vertex and plaquette operators in an order determined by the minimum-weight perfect-matching decod-
ing algorithm. This ability to perform corrections by stabilizing on nearby qubits also provides better connectivity for 
the circuits, as physical qubits may not have to be entangled with qubits as far away as with repetition codes. One 
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drawback to this scheme is that it requires many more physical qubits to produce one logical qubit than the repetition 
code. The simpler repetition code, however, in practice performs worse than the surface codes, and can only correct 
for one type of error.  
 

Limitations 
 
There are several limitations in our benchmark and model of these quantum error correction schemes - the largest 
being that this is a simulation of real errors, as practical implementations of these codes on physical hardware is still 
being developed (O’Gorman et al., 2016), and is not widely available. I am also using a simplified model of a random 
application of Pauli gates for errors, but in practice this approximation yields accurate estimates for the performance 
of quantum error correction codes (Bravyi et al., 2018), (Gutierrez & Brown, 2015). 
 

Conclusion 
 
Ultimately, I found that the Repetition code had the largest error threshold and can correct for the smallest range of 
errors. The surface codes however have orders of magnitude lower error threshold probabilities and can correct for 
much greater ranges of errors on systems. This makes surface codes more useful and applicable to physical situations 
in reducing error. I am interested in pursuing further extensions to this work by testing surface codes on physical 
implementations, to determine if they are indeed a feasible way of building a fault-tolerant quantum computer.  
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