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ABSTRACT 
 
Proteins play a vital role in the regulation of biological processes, facilitating the transfer of intermediates and coor-
dinating the sequential steps of biochemical pathways. Protein-protein interactions (PPIs) are crucial molecular events 
in which two or more proteins bind together, enabling the formation of protein complexes that govern various cellular 
activities, including signal transduction, gene expression, and enzymatic reactions. Evolutionary correlations arise due 
to the close proximity of amino acid side chains within these interactions, where amino acids on one side of an inter-
action surface may restrict which amino acids fit on the other side or encourage mutations that modify the surface. In 
this study, our aim is to investigate the correlation between protein sequence and structure in mycoplasma mycoides 
JCVI-syn3A, a minimal cell consisting of 493 genes. We utilize the EVCouplings framework, a coevolution-based 
approach with probabilistic scores for residue interactions, to predict protein-protein interactions and the specific sur-
faces that govern them. Our study demonstrates that coevolution-based computational methods can predict protein-
protein interactions and their interaction surfaces. After analyzing multiple sequence alignment (MSA) data across 
110 protein families, we identify a total of 33 inter-protein interactions. Our analysis of the protein-protein interactions 
in JCVI-syn3A provides valuable insights into the genetic architecture of Mycoplasma, one of the simplest cellular 
life forms known, and enhances our understanding of how the earliest cellular life forms might have functioned. 
 

Introduction 
 
Genome minimization is a synthetic biology approach that involves reducing the genome of an organism to its minimal 
gene set. The primary goal of genome minimization is to understand the fundamental physiological processes that 
give rise to life and to develop minimal organisms that can serve as useful tools in biotechnology and synthetic biol-
ogy. In the pursuit of creating the first artificial cell with a fully synthesized minimal genome, a bottom-up approach 
was initiated by the J. Craig Venter Institute in 2016, utilizing JCVI-syn3.0 derived from the natural genome of M. 
mycoides (Hutchison et al., 2016). The J. Craig Venter Institute utilized global transposon mutagenesis, a technique 
used to introduce random mutations throughout the genome of an organism using transposons, to identify the essential 
genes to be retained in JCVI-syn3.0 (Hutchison et al., 1999). More recently, the concept of genome minimization has 
been driven by advancements in DNA synthesis, sequencing technologies, and computational tools for genome anal-
ysis. By systematically removing nonessential genes, researchers can identify core genetic elements necessary for 
cellular function and explore the functional dependencies within a genome. 

 
Why did we choose JCVI-syn3A? 
 
The reductionist approach provided by genome minimization has proven to be highly effective in scientific analysis. 
Scientists use reductionist methods to simplify complex phenomena that are not well understood. This approach not 
only enhances our understanding of scientific phenomena but also facilitates their reconstruction, thereby yielding 
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successful outcomes. In chemistry, this approach involves deconstructing a substance into its pure components and 
understanding the function of each. For instance, the periodic table provides a predictive framework for all elements, 
where the rows and columns make specific predictions about their properties and behaviors. 
 

 
 
Figure 1. Whole-Cell Model of JCVI-Syn3A 
Credit: Ludovic Autin 
 

Despite recent advancements in genome minimization, understanding of cells at the molecular level remains 
limited. The JCVI-syn3.0 project successfully created a functional bacterium with only 473 genes, making it one of 
the smallest self-replicating cells ever produced. JCVI-syn3A, a mutant of JCVI-syn3.0, has only 19 additional genes 
and exhibits nearly normal morphology (Breuer et al., 2019). Moreover, it is the simplest cell that can be cultivated in 
the laboratory using media composed of pure components. Although we have identified all the genes in its genome, 
the precise function of many of these genes remains unknown. Further research into the functional organization of 
these genes and their products is essential to understanding the fundamental architecture of a simple cell. 

 
Protein Folding and Multiple Sequence Alignment 
 
At the molecular level, proteins are essential components that are involved in a wide range of biological processes, 
such as catalyzing chemical reactions, transmitting signals, and providing structural support. The unique three-dimen-
sional structure of proteins plays a critical role in their ability to execute specific functions. By predicting a protein's 
three-dimensional structure, scientists can infer its function and how it interacts with other molecules, including drugs. 
Designing and testing new proteins with specific properties, such as increased stability or improved binding affinity, 
can have far-reaching applications in biotechnology and medicine.  

To gain insights into protein structure and function, multiple sequence alignment (MSA) has become a vital 
bioinformatics tool that enables researchers to compare and analyze large volumes of genetic information. By aligning 
protein sequences derived from genome sequences, scientists can identify conserved regions, motifs, and domains that 
reveal evolutionary relationships, structural features, and functional implications. MSA can help researchers to iden-
tify drug-binding sites in proteins, enabling the design of novel drugs with high binding affinity. With this technique, 
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scientists can better understand how proteins interact with each other, design new drugs, and create novel biotechno-
logical applications. 
 

 
Figure 2. Schematic of Protein-Protein Interactions 
Credit: Debbie Marks Lab 
 
The EVCouplings Framework 
 
Evolutionary Coupling (EC) is a computational method developed in the 2010s. The Evolutionary Couplings frame-
work (EVCouplings) is an open-source bioinformatics tool that uses MSAs to predict co-evolving residues in protein 
families (https://github.com/debbiemarkslab/EVcouplings). The EC method aims to identify functional residues that 
are coevolving across different organisms, suggesting that they play a critical role in the protein’s structure and func-
tion. The EVCouplings framework utilizes a statistical model that compares the evolutionary patterns of amino acids 
in the MSA to identify co-evolving residue pairs. The statistical model utilizes an algorithm that computes a score for 
each residue pair, which reflects the strength of the co-evolutionary signal between them. The resulting score matrix 
can be used to predict the 3D structure of a protein and identify residues that are critical for its function. By analyzing 
patterns of amino acid co-variation in an alignment of putatively interacting proteins, evolutionary couplings between 
co-evolving inter-protein residue pairs can be identified and the interaction surface can be mapped.  
 
Research Questions 
 
1. Can sequence coevolution be used to determine probable protein-protein interactions in JCVI-syn3A? 
2. Can we identify inter-protein interaction surfaces between a subset of proteins in JCVI-syn3A? 
3. Can we map the interaction surfaces deduced through statistical methods onto known 3D protein structures? 

 

Methodology 
 
Computational methods offer a cost-effective and scalable means of analyzing complex data, which can provide in-
sights into experimental design and optimization. To this end, we utilized the EVCouplings framework in our analy-
sis, which depends on the existence of diverse protein sequences in the proteome. The EVCouplings method is im-
plemented using Python scripting and is capable of generating high-quality three-dimensional renderings, which 

were further analyzed using PYMOL. 
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Figure 3. Methodology 
 
By leveraging computational tools such as EC, we can conduct large-scale experiments that provide a wealth of data, 
which can then be used to inform and refine experimental approaches. This enables us to gain a deeper understanding 
of the underlying biology and develop novel solutions that can have a significant impact in biotechnology and medi-
cine. 
 
Step 1: To assemble the broadest possible data sets to make predictions, we first extracted all the protein sequences 
of the JCVI-syn3A genome in FASTA format.  
 
Step 2: We searched the PFAM-A library of HMMs using HMMER (Hidden Markov Modeler), a bioinformatics tool 
widely used to find similarities between different biological sequences (A New Generation of Homology Search Tools 
Based on Probabilistic Inference, 2009).  The output of HMMER is an expected value (e-value) score that represents 
the statistical significance of the match between the query sequence and the sequence models in the database. Using 
HMMER, we extracted a list of protein families (PFAMs) along with their e-value scores. For the exact commands 
executed, please see Steps.md in our GitHub project (https://github.com/arnav-meduri/JCVI-Syn3A-analysis).  To 
prune the PFAM list and come up with a subset of protein targets for co-evolution analysis, we utilized the following 
strategies: 

● Limit the potential combinatorial explosion of PFAMs. To compute co-evolution across proteins, individual 
protein sequences in each PFAM were paired with protein sequences with every other PFAM entry in the 
subset.  

● In the interest of time and computing power available, we limited the amount of computation that was per-
formed at the expense of possibly detecting fewer interactions.  

● We selected PFAM entries that have only a single Mycoplasma hit so hits are less ambiguous. (Suppose 
PFAM family A has Mycoplasma hit X and PFAM family B has Y and Z, and if we get a positive, it is not 
easy to interpret whether the correct pairing is X-Y or X-Z or both, for example).  

● By choosing an equal number of Mycoplasma hits (count = 1), we hypothesized that the statistical correlation 
signal would also be stronger.  
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Figure 4. PFAM E-Value Cutoff 
 

● We chose an E-value cutoff of 1E-60 while selecting a subset PFAMs and this resulted in 110 PFAM entries 
for pair analysis. A lower cutoff value implies a high confidence in the match, and that the match is not a 
coincidence. A lower cutoff has the potential to miss crucial matches. On the other hand, a higher cutoff will 
generate more noise in our analysis as it will include intra-protein interactions which are not the focus of our 
study. While the selection of a cutoff was somewhat arbitrary, it was carefully considered after evaluating 
the number of PFAMs that can be processed and analyzed with our available resources.  
 

Step 3: Next, for each pair of PFAMs within the subset of 110 PFAMs, we created a new multiple sequence alignment 
file by concatenating paired sequences. We ignored glue alignments that did not have any proteins belonging to My-
coplasma.  
 
Step 4: We performed statistical coevolution analysis using the PLMC tool in the EVcouplings framework (Ekeberg 
et al., 2014). The PLMC tool applies a pseudolikelihood maximization (PLM) approximation to determine the inter-
action parameters in the underlying maximum entropy probability model, generating both intra- and inter-EC scores 
of all pairs of residues within and across protein pairs. We used the protein sequence common across the Mycoplasma 
genus as the focus sequence with the PLMC tool and limited the number of iterations to 100. This optimization dras-
tically reduced the amount of time it took for pairwise analysis. We used our personal laptops with M1 processors and 
16 GB memory to complete each pair analysis. The computation required turned out to be both memory and CPU 
intensive. All the computations were completed over a 4-week period.  
 
Step 5: The PLMC (Pseudo-Likelihood Maximization Couplings) coupling score is a measure to evaluate the coevo-
lution between pairs of amino acid residues of pair proteins in a glued sequence (Ekeberg et al., 2014).. It represents 
the strength of the inferred interaction between two amino acid residues, with a higher score indicating a stronger 
interaction. In a multiple alignment, the rows are individual sequences, and the columns are amino acid positions.  In 
the process of aligning protein sequences, each position represents a putative hypothesis that assumes all the amino 
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acids at that location occupy the same spatial arrangement in the protein's three-dimensional structure. We filtered out 
PFAM coupling scores using the following strategy: 

• We filtered out scores that belonged to intra-protein matches, as we were interested in protein-protein 
interactions only.  

• We selected scores with a z-score of > 4. A z-score is a statistical measure that indicates how many 
standard deviations a particular score is from the mean score. Higher counts in figure 6 left of the red 
circle generally imply intra-protein couplings. A z-score of greater than 4 implies that the score is 4 
standard deviations higher than mean score and is a rare coupling. Such rare couplings of higher statis-
tical significance are worth further investigation in our study. The filtering resulted in a total of 33 pos-
sible interactions of pair proteins.  

 
Figure 5. Histogram of PLMC Scores for PFAM Pairs 

 
● For all of the identified interactions, we mapped the residue (amino acid) positions in the original sequence 

from the positions identified in the glued sequence by the EV couplings analysis.  
 

Step 6: We downloaded the 3D images of the proteins (Alpha fold PDB files), loaded them in PYMOL to examine 
and identify the interaction surfaces of these protein pairs based on the residue pair and position information. Further-
more, for each of the interactions that provided a clear surface, we classified the interactions as either hydrophilic or 
hydrophobic.  
 

Results  
 
Figure 7 illustrates interaction between proteins P47345 and P47346 (Glutamyl amidotransferase subunits A & B), 
one of the 33 interaction surfaces identified in our analysis. For background, in order to function in translation a tRNA 
first requires a specific enzyme known as a tRNA synthetase, which is responsible for attaching the appropriate amino 
acid to the tRNA. Mycoplasma, however, doesn’t have glutamine (Gln) tRNA synthetase. Instead, it charges the Gln-
tRNA with glutamate (Perona, 2013). The enzyme glutamyl amidotransferase (with subunits A & B shown below) 
adds an amino acid group to glutamate to form glutamine. Analysis using BLASTP confirmed that these proteins are 
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homologous to each other and therefore will have the same fold. Since this is bacterial specific, this interaction surface 
could be a good target for further study of antibiotic discovery and development. 

 
Figure 6. Interaction Surface between Proteins P47345 and P47346 
 
 

 
 
Figure 7. Heat map of amino acid interactions between Proteins P47345 and P47346 
 
Figure 7, shown above, illustrates a large interaction surface between the protein pairs, where multiple residues on 
one protein are interacting with a single residue on the other protein in the pair. 
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Figure 8. Hydrophilic vs Hydrophobic interactions between P47345 and P47346 
 
Below are three additional interaction surfaces identified by our study. It is extremely likely that these interactions are 
real and can be confirmed further through experimentation. You can view all the interactions identified by the study 
in our GitHub repository. 

 
Figure 9. Interaction surface between replicative DNA helicase and uncharacterized protein MG369 
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Figure 10. Interaction between 30S ribosomal protein S2 and 30S ribosomal protein S8 

 
Figure 11. Interaction surface between DNA-directed RNA polymerase and 30S ribosomal protein S7 
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Table 11. PPIs Identified in Our Analysis 
 
  
Protein Name 

Protein 
ID 

Protein 
ID Protein Name 

Enolase (EC 4.2.1.11) (2-phosphoglycerate de-
hydratase) P47647 P47609 Hypothetical protein MG369 
Phosphoglycerate kinase (EC 2.7.2.3) P47542 P47609 Hypothetical protein MG369 

30S ribosomal protein S7 P47334 P47583 
DNA-directed RNA polymerase beta chain 
(EC 2.7.7.6) (Transcriptase beta 

30S ribosomal protein S7 P47334 P47619 Glucose inhibited division protein A 

50S ribosomal protein L16 P47404 P47583 
DNA-directed RNA polymerase beta chain 
(EC 2.7.7.6) (Transcriptase beta 

Ribonucleoside-diphosphate reductase beta 
chain (EC 1.17.4.1) P47471 P47473 

Ribonucleoside-diphosphate reductase alpha 
chain (EC 1.17.4.1) 

30S ribosomal protein S2 P47316 P47411 30S ribosomal protein S8 

30S ribosomal protein S2 P47316 P47583 
DNA-directed RNA polymerase beta chain 
(EC 2.7.7.6) (Transcriptase beta 

30S ribosomal protein S2 P47316 P47609 Hypothetical protein MG369 
30S ribosomal protein S2 P47316 P47619 Glucose inhibited division protein A 

Preprotein translocase secY subunit P47416 P47583 
DNA-directed RNA polymerase beta chain 
(EC 2.7.7.6) (Transcriptase beta) 

  
Preprotein translocase secY subunit P47416 P47331 

Probable HPr(Ser) kinase/phosphatase (EC 
2.7.1.-) (EC 3.1.3.-) 

DNA-directed RNA polymerase beta chain (EC 
2.7.7.6) (Transcriptase beta P47583 P47582 

DNA-directed RNA polymerase beta' chain 
(EC 2.7.7.6) (Transcriptase beta) 

DNA-directed RNA polymerase beta chain (EC 
2.7.7.6) (Transcriptase beta P47583 P47609 Hypothetical protein MG369 

DNA-directed RNA polymerase beta chain (EC 
2.7.7.6) (Transcriptase beta P47583 P47619 Glucose inhibited division protein A 

Ribonuclease R (EC 3.1.-.-) (RNase R) (VacB 
protein homolog) P47350 P47609 Hypothetical protein MG369 

Probable cytosol aminopeptidase (EC 3.4.11.1) 
(Leucine aminopeptidase) P47631 P47609 Hypothetical protein MG369 

DNA topoisomerase I (EC 5.99.1.2) (Omega-
protein) (Relaxing enzyme) P47368 P47609 Hypothetical protein MG369 

Cysteinyl-tRNA synthetase (EC 6.1.1.16) (Cys-
teine--tRNA ligase) (CysRS) P47495 P47609 Hypothetical protein MG369 

Phenylalanyl-tRNA synthetase alpha chain (EC 
6.1.1.20) (Phenylalanine--tRNA P47436 P47609 Hypothetical protein MG369 

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 10



Alanyl-tRNA synthetase (EC 6.1.1.7) (Alanine-
-tRNA ligase) (AlaRS) P47534 P47609 Hypothetical protein MG369 

Glutamyl-tRNA(Gln) amidotransferase subunit 
A (EC 6.3.5.-) (Glu-ADT subunit P47345 P47346 

Aspartyl/glutamyl-tRNA(Asn/Gln) amido-
transferase subunit B (EC 6.3.5.-) 

  
Glutamyl-tRNA(Gln) amidotransferase subunit 
A (EC 6.3.5.-) (Glu-ADT subunit P47345 P47609 Hypothetical protein MG369 

Cytidylate kinase (EC 2.7.4.14) (CK) (Cytidine 
monophosphate kinase) (CMP P47572 P47609 Hypothetical protein MG369 

Probable thiamine biosynthesis protein thiI P47612 P47609 Hypothetical protein MG369 

Hypothetical protein MG110 P47356 P47609 Hypothetical protein MG369 

Replicative DNA helicase (EC 3.6.1.-) P47340 P47609 Hypothetical protein MG369 

DNA-directed RNA polymerase beta' chain (EC 
2.7.7.6) (Transcriptase beta' P47582 P47619 Glucose inhibited division protein A 

Probable HPr(Ser) kinase/phosphatase (EC 
2.7.1.-) (EC 3.1.3.-) P47331 P47609 Hypothetical protein MG369 

Probable HPr(Ser) kinase/phosphatase (EC 
2.7.1.-) (EC 3.1.3.-) P47331 P47619 Glucose inhibited division protein A 

Preprotein translocase secA subunit P47318 P47609 Hypothetical protein MG369 

Preprotein translocase secA subunit P47318 P47619 Glucose inhibited division protein A 

Hypothetical protein MG369 P47609 P47619 Glucose inhibited division protein A 

 
Discussion 
 
Despite significant advances in predicting the three-dimensional structures of proteins, such as the AlphaFold deep 
learning software, predicting protein-protein interactions remains an active research frontier. To date, a comprehensive 
molecular machine learning algorithm for predicting inter-protein interactions has yet to be developed.  

Our research has demonstrated the feasibility of predicting protein interactions using co-evolution-based 
computational methods, as applied to the JCVI-Syn3A proteome. The method we employed also predicted the inter-
action surfaces and a subset of the proteins. Our analysis of multiple sequence data across 110 protein families 
(PFAMs) revealed a total of thirty-three potential inter-protein interactions in JCVI-syn3A. Using computational 
methods to predict interactions in three dimensions from sequence data alone is a fascinating and compelling approach. 
Our study highlights the tremendous potential of computational methods in predicting protein-protein interactions, 
and their subsequent validation through experimental testing. By integrating computational methods with experi-
mental validation, we have demonstrated a powerful and cost-effective approach for investigating protein interactions, 
particularly in situations where experimental methods may be limited. Our research underscores the value of combin-
ing sequence data with the EVCouplings framework to gain insights into the underlying molecular mechanisms of 
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biological processes. This approach has broad applications across various fields, including drug discovery and devel-
opment.  

Overall, our study highlights the significance of leveraging computational methods to advance our under-
standing of the complex interplay between protein sequences, structures, and functions. We hope that our findings 
will inspire further research and development of innovative computational tools and methodologies to deepen our 
understanding of biological systems. 
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