

Smart Path Generation using Model Predictive Control

Sandeep Bajamahal

Saint Francis High School

ABSTRACT

This paper presents an investigation into path generation techniques using Model Predictive Control (MPC) and Pure
Pursuit algorithms, implemented and evaluated in a simulated environment using Python. The objective of the study
was to compare the performance of these two approaches in terms of path tracking and obstacle avoidance. The re-
search focused on the applicability of MPC and Pure Pursuit algorithms in autonomous navigation systems, with a
specific emphasis on addressing the challenge of generating smooth and dynamically feasible paths while ensuring
collision avoidance. The simulation environment provided a platform for conducting experiments, allowing for testing
and analysis of the algorithms. The results of the study demonstrated that MPC successfully generated paths while
effectively avoiding obstacles. The MPC algorithm exhibited robustness and adaptability to dynamically changing
environments, allowing the autonomous agent to navigate through complex scenarios. However, the investigation also
revealed a limitation with Pure Pursuit in terms of curvature volatility. The Pure Pursuit algorithm showed inconsistent
performance due to abrupt changes in curvature, which impacted the smoothness and stability of path tracking. Over-
all, this research highlights the significance of selecting an appropriate path generation algorithm based on the specific
requirements of the autonomous navigation system. The study serves as a foundation for future investigations and
advancements in path planning and control techniques, enabling the development of more efficient and reliable au-
tonomous systems.

Introduction

Path generation is the process of determining a sequence of waypoints that guide a certain entity to a desired destina-
tion. Path generation is commonly used in GPS navigation, autonomous driving, robotics, and flight control in order
to avoid obstacles or minimize travel time. There are various path generation algorithms aimed at addressing these
use cases. One challenge that these path generation algorithms face is dealing with a dynamic environment, where a
path may need to be modified during traversal time. Furthermore, path generation algorithms often must remain within
certain constraints on motion, such as vehicle limitations and energy efficiency. There are algorithms that address
these issues, such as Probabilistic Roadmaps (PRMs). PRMs reframe their environment into a sampling of nodes,
from which they create a graph. The graph is then searched for the shortest path from the entity to the desired node,
using shortest-path algorithms such as Dijkstra’s algorithm or A* search. However, one limitation of PRMs is their
inability to deal with moving obstacles, which may eliminate the viability of a chosen shortest path. A solution to path
generation in dynamic environments is a hybrid path generation and following algorithm between Model Predictive
Control (MPC) and Pure Pursuit. MPC is a range of algorithms that are used to optimize a system input in order to
approach a future output. MPC has varied uses because of its ability to handle multiple inputs and constraints. Some
of these uses are in power systems, spacecraft fuel optimization, and chemical refining plants. While MPC is used to
optimize systems, it can be modeled to optimize a path iteratively for the on the fly path generation. Since MPC takes
into account multiple inputs and constraints, it can deal with object avoidance and minimize curvature or path distance.
To simulate the MPC path, the Pure Pursuit path following algorithm can be used as it is adaptable to the MPC’s path
optimizing during traversal time.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 1

Overview of Model Predictive Control

Model Predictive Control requires a model of a system dynamic with inputs and outputs. This dynamic model can be
a set of equations that defines how the system works, or a simulation. Next, a desired system output must be supplied.
In path generation, this would be a coordinate position. To get to the desired system output, the MPC algorithm will
use a prediction horizon. The prediction horizon is a time period into the future which is divided into a finite number
of steps. At each step, the MPC algorithm will calculate the optimal set of inputs to get to the desired system output.
This set of inputs, or path, can be optimized to minimize any objective function provided. The first input from the
optimal set will be performed, and the MPC algorithm will recalculate the next set of inputs from the system’s new
output. This prediction horizon is shifted forward during this process.

Overview of Pure Pursuit

Pure pursuit is a path-following algorithm commonly used in robotics and autonomous navigation. The algorithm
requires a desired path, either as a set of waypoints or a parametric curve. The tuning factor of the algorithm is the
lookahead point, which is a point on the desired path that is some distance ahead of the vehicle. The algorithm calcu-
lates the curvature to this lookahead point a geometrical calculation (insert image here).

Design Overview

The proposed combination of Model Predictive Control and Pure Pursuit would work as follows. MPC would be used
for high level path planning that takes into account obstacle avoidance, constraints, and optimizations. Once MPC
generates a set of optimal waypoints, the Pure Pursuit algorithm can calculate the steering necessary to reach the next
waypoint. Any error from the Pure Pursuit path following algorithm will be used to readjust the MPC generated path
for the next set of optimal waypoints.

Procedures

Simulation Overview

The First Robotics Competition (FRC) Python package was used to access the Worchester Polytechnic Institute Ro-
botics Library (WPILib), a robotics library used by FRC teams to program industrial-scale robots. WPILib has simu-
lation capabilities for motors, drivetrains, and field positioning. For the purposes of this experiment, a four-wheel
drivetrain with a wheelbase distance of two meters was simulated. A physics engine was also written in order to
calculate encoder readings from the robot’s movement in order to simulate actual robot sensor input. In the simulation,
the robot has the capability to move around in a two-dimensional space.

Algorithm Implementation

The MPC Algorithm was programmed to generate a parabola from the robot’s current position to a desired destination.
The parabola was constrained to not intersect an obstacle in the shape of a rectangle, and was minimized for the least
curvature possible. Minimizing curvature also minimizes distance, as the path becomes closer to a straight line, which
is the shortest path between any two points. The SciPy library was used to perform the optimizations under specific
constraints for the parabola. The first trial of tests included a single obstacle which the robot must go around to reach
a desired destination using parabola paths.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 2

The Model Predictive Control and Pure Pursuit algorithms were implemented in a loop as follows. Every
twenty milliseconds, the Model Predictive Control generates an optimal parabola path for the robot to reach the target
point. A lookahead point is taken from this parabola, and the curvature from the robot’s current position to the
lookahead point is calculated using the following formula.

The curvature is fed into a curvature drive function provided by WPILib, which sends input to the simulated left and
right motors of the robot drivetrain accordingly such that they drive at a certain curvature.

Data and Analysis

During the simulation, robot position, time, and path details were collected and analyzed. The robot began at the origin
of a coordinate plane facing directly to the right and had a target point at (5, 5). The obstacle was a square bound from
(2, 2) to (3, 3). Every instant, the robot calculates a path from its position to the target point.

Figure 1: Model Predictive Control + Pure Pursuit Robot Path plotted using Matplotlib

The robot’s final position is at (5, 4.405). The robot manages to avoid the obstacle and approach the target point, but
is not able to accurately steer to the correct position.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 3

Table 1: Robot position and curvature over time.

Time (Seconds) X (Feet) Y (Feet) Curvature (1/Foot)
1.0 1.267 0.260 -0.014
2.0 1.605 1.316 -0.015
3.0 1.145 2.651 0.637
4.0 1.565 3.686 0.171
5.0 2.790 4.044 0.058
6.0 4.286 4.195 0.050
7.0 5.000 4.405 -0.017

 The robot path did not always approach the target point. Often the curvature-following algorithm caused the
robot to take more of a turn than necessary when avoiding obstacles. Furthermore, the accuracy of the robot was
dropped by the curvature path following algorithm, as the robot position was an average of 0.102 feet away from the
waypoint it was expected to be throughout the simulation. Out of all the paths generated by the MPC algorithm, 75%
of the paths were valid and avoided obstacles. The remaining paths were not optimized or valid for the robot.

Discussion

Conclusion

The results of the simulation of MPC path generation along with Pure Pursuit path following indicate that the two
algorithms are incompatible with a quadratic system, although there are various path models that remain to be tested.
The curvature approach to Pure Pursuit also proved to be inaccurate when combined with a changing path. However,
the path generation capabilities of MPC proved to be sufficient for obstacle avoidance, with a high rate of valid paths
generated throughout the simulation.

Applications

The adaptable path-generation techniques used in this experiment would be applicable to volatile environments found
in flight control and autonomous driving. Furthermore, the combination of path-following algorithms and path-gen-
eration algorithms must be optimized depending on their usage. This is key for vehicles that have physical constraints
on curvature change, such as trucks or buses due to their high center of gravity. MPC is optimal for vehicles with
higher curvature thresholds. The nature of parabola paths and Pure Pursuit proved to be capable of obstacle avoidance,
however a more robust equation should be used to handle both obstacle avoidance and minimal distance path genera-
tion.

Limitations

With a more robust path-following algorithm and simulation setup, MPC path generation could have also been tuned
for optimizing velocity, which would be more representative of a real-world environment.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 4

Future Research

There are various path equations that can be used with MPC to handle obstacle avoidance and shortest-distance path
generation. Furthermore, the combination of MPC and Pure Pursuit may require a different approach from curvature,
such as angle-based Pure Pursuit. This would allow the robot to split a path into a sequence of straight lines and turns
which can be followed accurately with a proportional term controller.

Acknowledgements

I would like to thank my school robotics team for providing me with guidance and the technologies required to perform
this study.

References

Camacho, E. F. (2013). Model predictive control in the process industry. Springer London Ltd.

Coulter, C. R. (1990). Implementation of the Pure Pursuit Path Tracking Algorithm.

https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf.

Probabilistic roadmaps for path planning in high-dimensional ... (n.d.).

https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/PRM/prmbasic_01.pdf

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 5

