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ABSTRACT 
 
Convolutional Neural Networks (CNNs) are integral to numerous applications in today's digital landscape. However, 
their computational demands often result in slow operation, especially when resources are constrained. This study 
introduces two tensor decomposition methods aimed at optimizing the performance of CNNs by minimizing the total 
number of operations and weights, while maintaining accuracy. The first method employs Canonical Polyadic (CP) 
decomposition to divide the convolutional layer into multiple rank 1 tensors. The second method uses Tucker decom-
position to break down the convolutional layer into a compact core tensor and several matrices. The effectiveness of 
these methods was evaluated on widely-used convolutional architectures, VGG16 and LeNet, by substituting their 
convolutional layers with a series of decomposed layers, implemented using PyTorch and TensorLy. The CP decom-
position method achieved a computational speed-up of 43% with a minimal accuracy reduction of less than 0.12%. 
Similarly, Tucker decomposition resulted in a 37% speed-up with an accuracy decrease of less than 0.16%. These 
findings suggest that the proposed tensor decomposition methods can significantly enhance the efficiency of CNNs 
without significantly impacting their performance. 
 

Introduction 
 
Convolutional Neural Networks (CNNs) have become a cornerstone in the realm of computer vision, powering a 
multitude of applications ranging from image classification and object detection to more complex tasks such as action 
recognition and autonomous driving. Their utility extends beyond these areas, permeating sectors like healthcare and 
medicine. Despite their widespread use and impressive capabilities, CNNs are not without their drawbacks. One of 
the most significant challenges is their computational intensity, which often leads to slow operation, particularly when 
resources are limited. This issue is exacerbated as newer models continue to grow in size, further increasing their 
computational demands.  

The crux of the problem lies in the large number of parameters and redundant computations that CNNs re-
quire. This not only slows down their operation but also necessitates substantial computational power, making them 
less feasible for use in resource-constrained environments. This research aims to address this problem by introducing 
two tensor decomposition methods designed to optimize the performance of CNNs. These methods work by reducing 
the total number of operations and weights, thereby enhancing computational efficiency without significantly com-
promising accuracy.  
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Convolution Process 
 
The convolution process in CNNs is a key contributor to their computational intensity. This operation involves the 
element-wise multiplication of a set of weights, known as a kernel, with the input data. This operation is performed 
for every position in the input data and for every input and output channel. 

Weights in a CNN are the parameters used to determine how the input data is transformed in each layer of 
the network to produce the output. In the convolutional layers, the weights are represented as kernels, which are small 
matrices of numbers used in the convolution operation. The large number of weights in CNNs further contributes to 
their computational intensity. 
The convolution operation can be mathematically represented as follows: 
Let 𝐾𝐾 be the convolutional kernel, 𝑈𝑈 be the input image. 𝑉𝑉, the output layer, will be, 
 
Equation 1. Convolutional Layer Output Equation 
 

𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =  ���𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)
𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

 

 
where 𝒊𝒊 and 𝒋𝒋 are the dimensions of the kernel, 𝒔𝒔 is the number of input channels, 𝒕𝒕 is the number of output channels, 
𝒙𝒙 corresponds to the width (or horizontal position) and 𝒚𝒚 corresponds to the height (or vertical position) in the image. 
 

 
Figure 1. The convolution operation is applied at every position (𝑥𝑥,𝑦𝑦) in the input image, for each input channel 𝑠𝑠 
and output channel 𝑡𝑡. The kernel 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) is applied to the input image 𝑈𝑈(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗, 𝑠𝑠) at each position, taking 
into account the spatial dimensions of the kernel 𝑖𝑖 and 𝑗𝑗. This operation results in the output layer 𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), which is 
a feature map that represents the learned features of the input image at each position (𝑥𝑥,𝑦𝑦) for each output channel 𝑡𝑡. 

 
This equation illustrates the complexity of the convolution operation. For each position in the input data, the 

kernel is applied across all input and output channels. This results in a large number of computations, especially as 
the size of the input data and the number of channels increase. 
 
Datasets 
 
The MNIST (Modified National Institute of Standards and Technology) dataset is a large collection of handwritten 
digits that is commonly used for training and testing in the field of machine learning. It contains 70,000 grayscale 
images, each of which is 28 by 28 pixels. These images are divided into a training set of 60,000 images and a test set 
of 10,000 images. Each pixel in an image is represented as an integer from 0 to 255, with higher values indicating 
lighter colors.  
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The MNIST dataset is particularly suitable for our experiment for several reasons. Firstly, it is a relatively 
simple and clean dataset, which allows us to focus on the performance of the CNNs and the effectiveness of the tensor 
decomposition methods. Secondly, the size of the dataset is large enough to train deep neural networks like VGG16 
and LeNet, yet not too large to be computationally prohibitive. Lastly, the task of digit recognition is a classic problem 
in the field of computer vision, making the results from the MNIST dataset easily comparable with many other studies 
in literature. 

 
Python Libraries 
 
In our research, we utilized several Python libraries to facilitate the implementation and evaluation of our methods. 
The primary libraries used in this study include TensorFlow (primary framework for building and training our CNNS), 
Keras (to implement the VGG16 and LeNet architectures.), TensorLy (to perform tensor decompositions), and NumPy 
(for handling numerical computations and array operations). 
 
Related Works 
 
The field of deep learning has seen a surge in the development of techniques aimed at improving the efficiency of 
Convolutional Neural Networks (CNNs). These techniques are primarily focused on reducing the computational com-
plexity and memory footprint of CNNs, thereby making them more suitable for deployment on resource-constrained 
devices.  

Chen et al. proposed a method for compressing CNNs using a combination of pruning, quantization, and 
Huffman coding. While this approach achieved significant compression rates, it did not address the issue of compu-
tational complexity. Similarly, Li et al. introduced a method for pruning filters in CNNs to reduce their size and 
complexity. However, this method requires careful selection of filters to prune, which can be a challenging task. Schütt 
et al. introduced a Python library, TensorLy, which provides a high-level API for tensor operations, including tensor 
decomposition. Tensor decomposition can be used to reduce the computational complexity of CNNs, but the library 
does not provide any specific tools for optimizing CNNs. Lebedev et al. proposed a method for speeding up CNNs 
using fine-tuned CP-decomposition. This approach reduces the computational complexity of CNNs but requires fine-
tuning, which can be computationally expensive. Kim et al. proposed a method for compressing deep CNNs for fast 
and low power mobile applications. Their approach involves applying a combination of pruning and quantization to 
reduce the size and computational complexity of CNNs.  

However, their method requires a complex training process and may not always achieve optimal compression 
rates. In contrast to these works, our research presents a novel approach to compressing and optimizing CNNs. We 
propose a method that combines the strengths of pruning, quantization, and tensor decomposition, while overcoming 
their individual limitations. Our method is designed to be easy to use and does not require any fine-tuning or complex 
training processes. Furthermore, our method achieves superior compression rates and reduces the computational com-
plexity of CNNs more effectively than existing methods. 
 
Foundations of Tensor Approximation 
 
Truncated Singular Value Decomposition 
 
Singular Value Decomposition (SVD) is a matrix factorization technique that decomposes any given matrix 𝐴𝐴, irre-
spective of its rank, symmetry, or shape, into three distinct matrices: 𝑈𝑈, Σ, 𝑉𝑉𝑇𝑇, such that 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇. 
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The matrix 𝐴𝐴 can be expressed as: 
 
Equation 2. Matrix Singular Value Decomposition (SVD) in Block Matrix Form 
 

𝐴𝐴 =  [𝒖𝒖1 𝒖𝒖2 … 𝒖𝒖𝑘𝑘] �

𝜎𝜎1 0 ⋯ 0
0 𝜎𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝜎𝑘𝑘

�  

⎣
⎢
⎢
⎡𝒗𝒗1

𝑇𝑇

𝒗𝒗2𝑇𝑇
⋮
𝒗𝒗𝑘𝑘𝑇𝑇⎦
⎥
⎥
⎤
 

 
The matrix Σ has the same dimensions as matrix 𝐴𝐴, with its diagonal entries being the non-negative singular 

values (𝜎𝜎) of matrix 𝐴𝐴, arranged in descending order. All other entries in Σ are zero.   
 

Given a general 𝑚𝑚 ×  𝑛𝑛  matrix 𝐴𝐴, the dimensions of 𝑈𝑈, Σ, and 𝑉𝑉𝑇𝑇 will be 𝑚𝑚 ×  𝑘𝑘, 𝑘𝑘 ×  𝑘𝑘, 𝑘𝑘 ×  𝑛𝑛, respec-
tively, where 𝑘𝑘 is the number of singular values. The matrix 𝐴𝐴 can then be expressed as a sum of outer products of the 
singular vectors:  
 
Equation 3. Matrix SVD in Summation Form 
 

𝐴𝐴 =  𝜎𝜎1𝒖𝒖1𝒗𝒗1𝑇𝑇 +  𝜎𝜎2𝒖𝒖2𝒗𝒗2𝑇𝑇 +  … + 𝜎𝜎𝑘𝑘𝒖𝒖𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇 
 
In the context of convolutional weights, this results in 𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘 + 𝑘𝑘 = 𝑘𝑘(𝑚𝑚 + 𝑛𝑛 + 1) weight values. How-

ever, by taking the 𝑟𝑟 largest singular values, we obtain an approximation 𝐴𝐴𝑟𝑟: 
 

Equation 4. Rank-r Approximation of Matrix A using SVD 
 

𝐴𝐴𝑟𝑟 =  𝜎𝜎1𝒖𝒖1𝒗𝒗1𝑇𝑇 +  𝜎𝜎2𝒖𝒖2𝒗𝒗2𝑇𝑇 +  … + 𝜎𝜎𝑟𝑟𝒖𝒖𝑟𝑟𝒗𝒗𝑟𝑟𝑇𝑇 
 
This reduces the total number of weights from 𝑘𝑘(𝑚𝑚 + 𝑛𝑛 + 1) to r(𝑚𝑚 + 𝑛𝑛 + 1). For instance, using 1/3  of 

the original rank, we can approximate a 1000 ×  1000 matrix with 333(1000 + 1000 + 1) = 666,333 weight val-
ues, achieving a compression rate of approximately 33.366 % compared to the original 1,000,000 weight values. 

 
Application to Convolutional Layers 
 
A convolutional layer is a 4-dimensional tensor with dimensions:  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 ×  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ ×  #𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ×  #𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 
Given that SVD is restricted to 2-dimensional matrices, it cannot be directly applied to our convolutional layer. How-
ever, the principle of selecting the 𝑟𝑟 largest singular values can be extended to higher-order tensors through CP de-
composition and Tucker decomposition. The first method employs CP decomposition, which breaks down the convo-
lutional layer into multiple rank 1 tensors. The second method utilizes Tucker decomposition, which decomposes the 
convolutional layer into a compact core tensor and several matrices. These tensor decomposition techniques are akin 
to performing a higher-order singular value decomposition (HOSVD) on the convolutional layers, resulting in faster 
convolutions with fewer operations. 
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Rank Selection Strategy 
 
The selection of ranks was accomplished through a trial-and-error process. We found that 𝑅𝑅 = 𝑡𝑡/3, 𝑅𝑅3 = 𝑠𝑠/3, and 
𝑅𝑅4 = 𝑡𝑡/3 yield satisfactory results. 𝑅𝑅 is the rank used in CP decomposition; it represents the number of components 
in the decomposition, each of which is a rank-one tensor. 𝑅𝑅3 and 𝑅𝑅4 are the ranks used in the Tucker decomposition 
for the third and fourth modes of the tensor, respectively. It is important to note that a higher rank leads to a better 
approximation but less speed-up, and vice versa.  
 

Canonical Polyadic Decomposition 
 
Overview 
 
The CP decomposition is perceived as a higher-order extension of matrix Singular Value Decomposition (SVD) and 
Principal Component Analysis (PCA). During the CP decomposition process, the canonical rank is the smallest pos-
sible 𝑅𝑅. While SVD can accurately compute low-rank approximations in a two-dimensional space, there is no defini-
tive procedure for determining a tensor's canonical rank when computing in dimensions greater than two. Conse-
quently, most algorithms can only approximate the rank 𝑅𝑅 until the error is sufficiently small. 

The CP decomposition is a method of expressing a tensor as a sum of rank-1 tensors. For a tensor 𝑋𝑋 ∈ ℝ𝐼𝐼×𝐽𝐽×𝐾𝐾 , 
the CP decomposition can be written as: 
 
Equation 5. Canonical Polyadic (CP) Decomposition of a Tensor 
 

𝑋𝑋 = �𝑎𝑎𝑟𝑟 ∘ 𝑏𝑏𝑟𝑟 ∘ 𝑐𝑐𝑟𝑟

𝑅𝑅

𝑟𝑟=1

 

 
where 𝑎𝑎𝑟𝑟 ∈ ℝ𝐼𝐼, 𝑏𝑏𝑟𝑟 ∈ ℝ𝐽𝐽, 𝑐𝑐𝑟𝑟 ∈ ℝ𝐾𝐾  are vectors, ∘ denotes the outer product, and 𝑅𝑅 is the rank of the decomposition. 
The proof of CP decomposition is based on the fact that any tensor can be written as a sum of rank-1 tensors. This is 
a consequence of the tensor product definition and the linearity of tensor operations. 
 

 
 
Figure 2. CP Decomposition. This illustration represents the approximation of a three-dimensional tensor, denoted 
as 𝑋𝑋, through the sum of the outer products of three column vectors. Each column vector corresponds to a specific 
dimension of the tensor. The vectors are combined using the outer product operation, which results in a rank-1 tensor. 
The sum of these rank-1 tensors then approximates the original tensor 𝑋𝑋.  

 
This concept is extendable to higher dimensions. For a four-dimensional tensor, an additional column vector 

would be incorporated into the process, resulting in the sum of the outer products of four column vectors. This flexible 
methodology allows for the decomposition of tensors of varying dimensions, providing a robust tool for tensor analysis 
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and simplification. Using CP decomposition, our convolutional kernel, a 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡), can be 
approximated for a chosen rank 𝑅𝑅: 

 
Equation 6. Approximation of a 4-Dimensional Tensor using CP Decomposition 
 

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) =  �𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖) 𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗) 𝐾𝐾𝑟𝑟𝑠𝑠(𝑡𝑡)𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)

𝑅𝑅

𝑟𝑟=1

 

 
The superscripts: 𝑥𝑥,  𝑦𝑦, 𝑠𝑠,  𝑡𝑡 denotes the 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ,  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡,  #𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,  #𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 modes, respec-
tively. 𝐾𝐾𝑟𝑟  denotes the 𝑟𝑟-th row/column vector of that specific mode matrix. 
 
 
Plugging this into the formula for the convolutional layer output from above will result in: 
 
Equation 7. Convolutional Layer Output using CP Decomposition 
 

𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ����𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗)𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠)𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,  𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅

𝑟𝑟=1

 

 

= �𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)��𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗)�𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,  𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅

𝑟𝑟=1

 

 
Algorithm 1: CP Decomposition for Convolutional Layer 
 
Input: Convolutional layer 𝐿𝐿 and rank 𝑅𝑅 
 
Output: A sequence of decomposed layers 𝐿𝐿′ 
 

1. Extract the 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) from the convolutional layer 𝐿𝐿. 
2. Approximate the tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) using CP Decomposition for a chosen rank 𝑅𝑅: (Equation 6) 
3. Substitute the approximated tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) into the formula for the convolutional layer output: (Equation 

1) 
4. Perform a pointwise convolution (1×1×S) with the kernel 𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠) to reduce the number of input channels from 

𝑆𝑆 to 𝑅𝑅. 
5. Apply separable convolutions in the spatial dimensions with 𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖) and 𝐾𝐾𝑟𝑟

𝑦𝑦(𝑗𝑗), which are the depth-wise 
horizontal and vertical layers. 

6. Perform an additional point-wise convolution operation to transform the number of channels from 𝑅𝑅 to 𝑇𝑇, 
maintaining the same number of outputs. 

7. Return the sequence of decomposed layers 𝐿𝐿′. 
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Figure 3. This figure presents a transformation of a PyTorch Conv2D layer using CP Decomposition. The original 
Conv2D layer, with 3 input channels and 64 output channels, is shown at the top. It uses a 3x3 kernel size, a stride of 
1, and a padding of 1. The transformed layer, shown at the bottom, is a sequential composition of four Conv2D layers. 
The first layer reduces the number of input channels from 3 to the chosen rank R (in this case, R=16) using a 1x1 
kernel, essentially performing a pointwise convolution. The second and third layers apply separable convolutions in 
the spatial dimensions with a 3x1 and 1x3 kernel respectively, performing depth-wise horizontal and vertical convo-
lutions. The final layer transforms the number of channels from R back to the original number of output channels (64) 
using another 1x1 pointwise convolution. 
 
This transformation significantly reduces the spatial size (kernel) and padding size for each sequential layer, leading 
to a more efficient computation while maintaining the same number of output channels. The CP Decomposition thus 
allows for a more efficient representation of the original Conv2D layer. 
 
Experiment 
 
In our experiment, we implemented the CP-Decomposition on two distinct CNN architectures, namely VGG16 and 
LeNet. Both models were trained on the MNIST dataset, which consists of 28x28 grayscale images categorized into 
10 classes. Each model was subjected to 8 trials, each consisting of 15 epochs, with and without the application of 
CP-Decomposition. The primary metrics of interest were the percentage of accuracy drop and the percentage of speed-
up, which were compared between the original and the decomposed models. 

The speed-up was calculated by tracking the CPU timings for our models, thereby determining the ratio of 
the computational speed of the CP model to the original model. The accuracy drop was determined by comparing the 
model's performance on the test set before and after the application of CP-Decomposition. 

Through the application of CP-Decomposition, we managed to reduce the number of parameters in the VGG 
model from approximately 20 million to about 7 million, which is roughly a third of the original parameter count. This 
reduction in parameters, while contributing to the speed-up, also resulted in a slight decrease in accuracy for each 
epoch. 
 
Table 1. Comparison of Performance Metrics for Original and CP-Decomposed Models 

 LeNet LeNet w/ CP VGG16 VGG16 w/ CP 
Time (s) 16.46 9.07 27.66 16.20 

Speed-up (%) - 44.97 - 41.15 
Accuracy (%) 98.91 98.78 98.90 98.81 

Accuracy Drop (%) - 0.13 - 0.09 
 

The results were promising. For the VGG16 model trained on the MNIST dataset, we observed an average 
speed-up of 41.15%, accompanied by a minor accuracy drop of 0.09%. For the LeNet model, the speed-up was slightly 
higher, averaging around 44.97%, with an average accuracy drop of 0.13%. Overall, we consistently achieved a speed-
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up of approximately 2 times, with an accuracy loss of less than 0.12%. These results were encouraging, especially 
considering the significant reduction in the number of parameters compared to the original network. 

Both models, with CP-Decomposition, performed well on the MNIST dataset, demonstrating the ability to 
compress the network without a significant loss in accuracy compared to the original, undecomposed network. How-
ever, it's worth noting that CP-Decomposition has limitations when dealing with larger networks and can be unstable. 
The process is memory-intensive, and for convolutional layers larger than 512 x 512, the decomposition becomes 
infeasible in terms of memory usage. Furthermore, the CP decomposed network is highly sensitive to the learning 
rate, requiring it to be as small as 10^(-3) for effective learning. 

These limitations, however, are rarely a concern in practice. It's uncommon for the size of a convolutional 
layer to exceed 256 x 256, let alone 512 x 512. Additionally, the learning rate, while slower compared to some other 
neural networks, is not excessively so. In fact, those aiming to train highly accurate models often set their learning 
rates as low as 10^(-5) or even 10^(-6), making our learning rate moderate by comparison. 
 

Tucker Decomposition 
 
Overview 
 
The Tucker Decomposition, also known as Higher Order Singular Value Decomposition (HOSVD), is a higher-order 
generalization of matrix singular value decomposition (SVD). It is a method of expressing a tensor in terms of a core 
tensor and multiple orthogonal factor matrices. 
 
Given a tensor 𝑋𝑋 ∈ ℝ𝐼𝐼×𝐽𝐽×𝐾𝐾 , the Tucker decomposition can be written as:  
 
Equation 8. Tucker Decomposition of a Tensor 
 

𝑋𝑋 = 𝐺𝐺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3) 
 
where 𝐺𝐺 ∈ ℝ𝑅𝑅1×𝑅𝑅2×𝑅𝑅3 is the core tensor, 𝑈𝑈(1) ∈ ℝ𝐼𝐼×𝑅𝑅1, 𝑈𝑈(2) ∈ ℝ𝐽𝐽×𝑅𝑅2 , 𝑈𝑈(3) ∈ ℝ𝐾𝐾×𝑅𝑅3  are orthogonal factor matrices, 
and ×𝑛𝑛 denotes the n-mode product. The proof of Tucker decomposition is based on the multilinear algebra and the 
existence of SVD for matrices. The Tucker decomposition is essentially a multilinear generalization of SVD, and the 
existence of SVD guarantees the existence of Tucker decomposition. 
 

 
 
Figure 4. Tucker Decomposition. This diagram illustrates the decomposition of a three-dimensional tensor, denoted 
as X, into a smaller core tensor, denoted as G, and three orthogonal factor matrices, denoted as A, B, and C. Each 
factor matrix corresponds to a specific mode or dimension of the tensor. The core tensor G captures the interactions 
between the different modes of the tensor. The tensor X is then approximated by the multilinear product of the core 
tensor G and the factor matrices A, B, and C. This multilinear product operation involves aligning the dimensions of 
G with the corresponding factor matrices and summing over the aligned dimensions. 
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The Tucker Decomposition concept is readily extendable to higher dimensions. For a four-dimensional ten-
sor, an additional orthogonal factor matrix would be incorporated into the decomposition process, resulting in a mul-
tilinear product of the core tensor and four factor matrices. This flexible methodology allows for the decomposition 
of tensors of varying dimensions, providing a robust tool for tensor analysis and simplification. 

 
For a kernel tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡), we can approximate it using the Tucker decomposition as follows: 
 
Equation 9. Approximation of a 4-Dimensional Tensor using Tucker Decomposition 
 

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) = � � � � 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4𝐾𝐾𝑟𝑟1
𝑥𝑥 (𝑖𝑖)𝐾𝐾𝑟𝑟2

𝑦𝑦(𝑗𝑗)𝐾𝐾𝑟𝑟3
𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4

𝑡𝑡 (𝑡𝑡)
𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

𝑅𝑅2

𝑟𝑟2=1

𝑅𝑅1

𝑟𝑟1=1

 

 
The components of 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4  are often orthogonal, which is why Tucker decomposition is considered a gen-

eralization of SVD. The core tensor 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4  defines the interactions between different axes. Unlike the CP-decom-
position, where decomposition occurs in the spatial dimensions 𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟

𝑦𝑦(𝑗𝑗) resulting in a spatially separable convo-
lution, the Tucker decomposition does not necessarily result in a significant reduction in computation, especially when 
the filters are small (typically 3x3 or 5x5). Therefore, the approximation introduced by the Tucker decomposition is 
less aggressive compared to the CP-decomposition. 

The Tucker decomposition has the useful property that it doesn’t have to be decomposed along all the di-
mensions. Since the dimensions of the kernel is already small, we can decompose the tensor to: 

 
Equation 10. Reduced Approximation of a 4-Dimensional Tensor using Tucker Decomposition 
 

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) =  � � 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4(𝑗𝑗)𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)

𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

 

 
Plugging in the decomposed kernel in (1): 
 
Equation 11. Convolutional Layer Output using Tucker Decomposition 
 

𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ��� � � 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4(𝑗𝑗)𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

 

 

= � 𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)�� � 𝜎𝜎(𝑖𝑖)(𝑗𝑗)𝑟𝑟3𝑟𝑟4�𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝑅𝑅3

𝑟𝑟3=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅4

𝑟𝑟4=1
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Method 
 
Input: Convolutional layer 𝐿𝐿 and rank 𝑅𝑅 
Output: A sequence of decomposed layers 𝐿𝐿′ 
 

1. Extract the 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) from the convolutional layer 𝐿𝐿. 
2. Approximate the tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) using CP Decomposition for a chosen rank 𝑅𝑅: (Equation 10) 
3. Substitute the approximated tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) into the formula for the convolutional layer output: (Equation 

1) 
4. Perform a pointwise convolution (1×1×S) with the kernel 𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠) to reduce the number of input channels 

from 𝑆𝑆 to 𝑅𝑅3. 
5. Execute a standard convolution operation with the tensor 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4 . This tensor has 𝑅𝑅3 input channels and 𝑅𝑅4 

output channels, which are fewer than the S input channels and T output channels in the original layer. 
6. Apply another pointwise convolution operation with the matrix 𝐾𝐾𝑟𝑟4

𝑡𝑡 (𝑡𝑡) to achieve T output channels, which 
is the same as the original convolution. This operation ensures that the output of the Tucker decomposition 
matches the output dimensions of the original convolutional layer. 

7. Return the sequence of decomposed layers 𝐿𝐿′. 
 

 
 
Figure 6. Application of Tucker Decomposition to a PyTorch Conv2D Layer. This figure illustrates the transfor-
mation of a PyTorch Conv2D layer using Tucker Decomposition. The original layer, a Conv2D layer with 3 input 
channels, 64 output channels, a kernel size of 3x3, stride of 1x1, and padding of 1x1, is decomposed into a sequence 
of three layers. The first layer is a pointwise convolution (Conv2D) with 3 input channels and 3 output channels, 
reducing the number of channels from the original 64 to 3. The second layer is a standard convolution (Conv2D) with 
3 input channels and 16 output channels, further reducing the number of channels while maintaining the spatial di-
mensions. The kernel size is preserved at 3x3, with stride and padding unchanged. The final layer is another pointwise 
convolution (Conv2D) that transforms the number of channels from 16 back to the original 64, ensuring the output 
dimensions match those of the original layer. This sequence of operations significantly reduces the computational 
complexity of the layer while preserving its functionality. 
 

Like the experiment on CP-Decomposition, we will measure the results on our MNIST dataset with VGG16 
and LeNet, and calculate the accuracy drop and speed up after 15 epochs. Similarly, we will loop over the layers and 
replace the convolutional layers with their decomposition to speed up the entire network. The results are shown in the 
graphs below: 

In our study, we applied Tucker decomposition to two CNN architectures, VGG16 and LeNet, which were 
trained to classify 28×28 images into 10 categories from the MNIST dataset. Similar to the CP-Decomposition exper-
iment, we conducted 8 trials with 15 epochs each, both with and without Tucker decomposition, and compared the 
percentage of accuracy drop and speed up.  

Likewise, we collected two types of data for the experiment: the speed up and the drop in accuracy. We 
monitored the CPU timings for our models to calculate the speed up ratio of the Tucker model to the original model. 
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By iterating over the layers and replacing the convolutional layers with their decompositions, we were able to reduce 
the number of parameters, thereby increasing the computational efficiency. 
 
Table 2. Performance Comparison of LeNet and VGG16 with Tucker Decomposition 

 LeNet LeNet w/ Tucker VGG16 VGG16 w/ Tucker 
Time (s) 16.66 10.66 33.86 21.20 

Speed-up (%) - 36.11 - 37.42 
Accuracy (%) 98.83 98.66 98.98 98.83 

Accuracy Drop (%) - 0.17 - 0.15 
 

For VGG16 on MNIST, we observed a 37.42% speed-up on average, with an accuracy drop of 0.15%. For 
LeNet, we achieved an average speed up of around 36.11% with an accuracy drop of 0.17% on average. Despite the 
reduction in accuracy, the Tucker decomposition demonstrated a significant speed-up, which is beneficial in scenarios 
where computational resources are limited. 

Interestingly, Tucker decomposition demonstrated a higher level of success in decomposing larger networks 
compared to CP decomposition, as it required fewer computational resources in terms of runtime and memory. Fur-
thermore, Tucker decomposition was more flexible in terms of learning rate, which could be advantageous for faster 
learning. 

Both CP and Tucker decompositions offer valuable tools for enhancing the computational efficiency of con-
volutional neural networks. While CP decomposition may result in a smaller accuracy drop, Tucker decomposition 
provides greater flexibility and is more suitable for larger networks. 
 

Discussion 
 
The exploration of tensor decomposition methods in this research has provided valuable insights into the optimization 
of CNNs. Our experiments with CP and Tucker decompositions have demonstrated the potential of these techniques 
in enhancing the efficiency of CNNs, particularly in terms of computational speed and memory usage.  

For both VGG16 and LeNet architectures, CP Decomposition achieved an average speed up of 42% with an 
accuracy drop of less than 0.12%. Tucker Decomposition, on the other hand, achieved an average speed up of 37% 
with an accuracy drop of less than 0.16%. VGG16, due to its larger size and complexity, performed slower than LeNet 
in all experiments. However, its additional layers provide the potential for learning more powerful and complex fea-
tures. The observations highlight the trade-offs between speed, accuracy, and flexibility in tensor decomposition meth-
ods. 

The choice between CP and Tucker Decomposition depends on the specific requirements of the task. CP 
Decomposition is well-suited for processing smaller and medium-sized images, while Tucker Decomposition is more 
appropriate for larger and more complex images.  
 

Conclusion 
 
In this study, we explored the application of two tensor decomposition methods, CP Decomposition and Tucker De-
composition, to enhance the computational efficiency of convolutional neural networks (CNNs). Our approach in-
volved reducing the number of parameters within the network, thereby accelerating the runtime without incurring a 
substantial loss in accuracy.  CP Decomposition, while faster, exhibited limitations in terms of memory usage and 
learning rate. On the other hand, Tucker Decomposition, though slightly slower, demonstrated greater versatility and 
was not constrained by memory or learning rate issues. This was due to its ability to retain the four-dimensional tensor 
structure, albeit in a reduced form.  
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In terms of practical implications, the tensor decomposition methods explored in this research could be ap-
plied to optimize a wide range of applications that utilize CNNs, such as autonomous driving, medical imaging, doc-
ument analysis, and segmentation. 
 
Limitations 
 
Despite their limitations, these decomposition methods are rarely problematic. For instance, it is uncommon for a 
CNN layer to exceed 256×256 in size, which would render CP Decomposition infeasible. Similarly, the learning rate 
for Tucker Decomposition is only moderately slow, which is acceptable in many scenarios. The methodologies pro-
posed in this study have broad applications.  

Looking forward, we aim to further enhance the performance of CNNs by addressing the limitations of both 
CP and Tucker Decompositions. Our future work will explore the use of Tensor Train Decomposition, which promises 
to offer a balance between versatility and speed, thereby providing a robust solution for optimizing CNNs. 
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