

Optimizing Convolutional Neural Networks Utilizing
Tensor Decomposition Techniques for Large-Scale
Image Recognition Tasks

Tiancheng Hu

Hamilton High School

ABSTRACT

Convolutional Neural Networks (CNNs) are integral to numerous applications in today's digital landscape. However,
their computational demands often result in slow operation, especially when resources are constrained. This study
introduces two tensor decomposition methods aimed at optimizing the performance of CNNs by minimizing the total
number of operations and weights, while maintaining accuracy. The first method employs Canonical Polyadic (CP)
decomposition to divide the convolutional layer into multiple rank 1 tensors. The second method uses Tucker decom-
position to break down the convolutional layer into a compact core tensor and several matrices. The effectiveness of
these methods was evaluated on widely-used convolutional architectures, VGG16 and LeNet, by substituting their
convolutional layers with a series of decomposed layers, implemented using PyTorch and TensorLy. The CP decom-
position method achieved a computational speed-up of 43% with a minimal accuracy reduction of less than 0.12%.
Similarly, Tucker decomposition resulted in a 37% speed-up with an accuracy decrease of less than 0.16%. These
findings suggest that the proposed tensor decomposition methods can significantly enhance the efficiency of CNNs
without significantly impacting their performance.

Introduction

Convolutional Neural Networks (CNNs) have become a cornerstone in the realm of computer vision, powering a
multitude of applications ranging from image classification and object detection to more complex tasks such as action
recognition and autonomous driving. Their utility extends beyond these areas, permeating sectors like healthcare and
medicine. Despite their widespread use and impressive capabilities, CNNs are not without their drawbacks. One of
the most significant challenges is their computational intensity, which often leads to slow operation, particularly when
resources are limited. This issue is exacerbated as newer models continue to grow in size, further increasing their
computational demands.

The crux of the problem lies in the large number of parameters and redundant computations that CNNs re-
quire. This not only slows down their operation but also necessitates substantial computational power, making them
less feasible for use in resource-constrained environments. This research aims to address this problem by introducing
two tensor decomposition methods designed to optimize the performance of CNNs. These methods work by reducing
the total number of operations and weights, thereby enhancing computational efficiency without significantly com-
promising accuracy.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 1

Convolution Process

The convolution process in CNNs is a key contributor to their computational intensity. This operation involves the
element-wise multiplication of a set of weights, known as a kernel, with the input data. This operation is performed
for every position in the input data and for every input and output channel.

Weights in a CNN are the parameters used to determine how the input data is transformed in each layer of
the network to produce the output. In the convolutional layers, the weights are represented as kernels, which are small
matrices of numbers used in the convolution operation. The large number of weights in CNNs further contributes to
their computational intensity.
The convolution operation can be mathematically represented as follows:
Let 𝐾𝐾 be the convolutional kernel, 𝑈𝑈 be the input image. 𝑉𝑉, the output layer, will be,

Equation 1. Convolutional Layer Output Equation

𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ���𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)
𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

where 𝒊𝒊 and 𝒋𝒋 are the dimensions of the kernel, 𝒔𝒔 is the number of input channels, 𝒕𝒕 is the number of output channels,
𝒙𝒙 corresponds to the width (or horizontal position) and 𝒚𝒚 corresponds to the height (or vertical position) in the image.

Figure 1. The convolution operation is applied at every position (𝑥𝑥,𝑦𝑦) in the input image, for each input channel 𝑠𝑠
and output channel 𝑡𝑡. The kernel 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) is applied to the input image 𝑈𝑈(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗, 𝑠𝑠) at each position, taking
into account the spatial dimensions of the kernel 𝑖𝑖 and 𝑗𝑗. This operation results in the output layer 𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), which is
a feature map that represents the learned features of the input image at each position (𝑥𝑥,𝑦𝑦) for each output channel 𝑡𝑡.

This equation illustrates the complexity of the convolution operation. For each position in the input data, the

kernel is applied across all input and output channels. This results in a large number of computations, especially as
the size of the input data and the number of channels increase.

Datasets

The MNIST (Modified National Institute of Standards and Technology) dataset is a large collection of handwritten
digits that is commonly used for training and testing in the field of machine learning. It contains 70,000 grayscale
images, each of which is 28 by 28 pixels. These images are divided into a training set of 60,000 images and a test set
of 10,000 images. Each pixel in an image is represented as an integer from 0 to 255, with higher values indicating
lighter colors.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 2

The MNIST dataset is particularly suitable for our experiment for several reasons. Firstly, it is a relatively
simple and clean dataset, which allows us to focus on the performance of the CNNs and the effectiveness of the tensor
decomposition methods. Secondly, the size of the dataset is large enough to train deep neural networks like VGG16
and LeNet, yet not too large to be computationally prohibitive. Lastly, the task of digit recognition is a classic problem
in the field of computer vision, making the results from the MNIST dataset easily comparable with many other studies
in literature.

Python Libraries

In our research, we utilized several Python libraries to facilitate the implementation and evaluation of our methods.
The primary libraries used in this study include TensorFlow (primary framework for building and training our CNNS),
Keras (to implement the VGG16 and LeNet architectures.), TensorLy (to perform tensor decompositions), and NumPy
(for handling numerical computations and array operations).

Related Works

The field of deep learning has seen a surge in the development of techniques aimed at improving the efficiency of
Convolutional Neural Networks (CNNs). These techniques are primarily focused on reducing the computational com-
plexity and memory footprint of CNNs, thereby making them more suitable for deployment on resource-constrained
devices.

Chen et al. proposed a method for compressing CNNs using a combination of pruning, quantization, and
Huffman coding. While this approach achieved significant compression rates, it did not address the issue of compu-
tational complexity. Similarly, Li et al. introduced a method for pruning filters in CNNs to reduce their size and
complexity. However, this method requires careful selection of filters to prune, which can be a challenging task. Schütt
et al. introduced a Python library, TensorLy, which provides a high-level API for tensor operations, including tensor
decomposition. Tensor decomposition can be used to reduce the computational complexity of CNNs, but the library
does not provide any specific tools for optimizing CNNs. Lebedev et al. proposed a method for speeding up CNNs
using fine-tuned CP-decomposition. This approach reduces the computational complexity of CNNs but requires fine-
tuning, which can be computationally expensive. Kim et al. proposed a method for compressing deep CNNs for fast
and low power mobile applications. Their approach involves applying a combination of pruning and quantization to
reduce the size and computational complexity of CNNs.

However, their method requires a complex training process and may not always achieve optimal compression
rates. In contrast to these works, our research presents a novel approach to compressing and optimizing CNNs. We
propose a method that combines the strengths of pruning, quantization, and tensor decomposition, while overcoming
their individual limitations. Our method is designed to be easy to use and does not require any fine-tuning or complex
training processes. Furthermore, our method achieves superior compression rates and reduces the computational com-
plexity of CNNs more effectively than existing methods.

Foundations of Tensor Approximation

Truncated Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix factorization technique that decomposes any given matrix 𝐴𝐴, irre-
spective of its rank, symmetry, or shape, into three distinct matrices: 𝑈𝑈, Σ, 𝑉𝑉𝑇𝑇, such that 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 3

The matrix 𝐴𝐴 can be expressed as:

Equation 2. Matrix Singular Value Decomposition (SVD) in Block Matrix Form

𝐴𝐴 = [𝒖𝒖1 𝒖𝒖2 … 𝒖𝒖𝑘𝑘] �

𝜎𝜎1 0 ⋯ 0
0 𝜎𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝜎𝑘𝑘

�

⎣
⎢
⎢
⎡𝒗𝒗1

𝑇𝑇

𝒗𝒗2𝑇𝑇
⋮
𝒗𝒗𝑘𝑘𝑇𝑇⎦
⎥
⎥
⎤

The matrix Σ has the same dimensions as matrix 𝐴𝐴, with its diagonal entries being the non-negative singular

values (𝜎𝜎) of matrix 𝐴𝐴, arranged in descending order. All other entries in Σ are zero.

Given a general 𝑚𝑚 × 𝑛𝑛 matrix 𝐴𝐴, the dimensions of 𝑈𝑈, Σ, and 𝑉𝑉𝑇𝑇 will be 𝑚𝑚 × 𝑘𝑘, 𝑘𝑘 × 𝑘𝑘, 𝑘𝑘 × 𝑛𝑛, respec-
tively, where 𝑘𝑘 is the number of singular values. The matrix 𝐴𝐴 can then be expressed as a sum of outer products of the
singular vectors:

Equation 3. Matrix SVD in Summation Form

𝐴𝐴 = 𝜎𝜎1𝒖𝒖1𝒗𝒗1𝑇𝑇 + 𝜎𝜎2𝒖𝒖2𝒗𝒗2𝑇𝑇 + … + 𝜎𝜎𝑘𝑘𝒖𝒖𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇

In the context of convolutional weights, this results in 𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑘𝑘 + 𝑘𝑘 = 𝑘𝑘(𝑚𝑚 + 𝑛𝑛 + 1) weight values. How-

ever, by taking the 𝑟𝑟 largest singular values, we obtain an approximation 𝐴𝐴𝑟𝑟:

Equation 4. Rank-r Approximation of Matrix A using SVD

𝐴𝐴𝑟𝑟 = 𝜎𝜎1𝒖𝒖1𝒗𝒗1𝑇𝑇 + 𝜎𝜎2𝒖𝒖2𝒗𝒗2𝑇𝑇 + … + 𝜎𝜎𝑟𝑟𝒖𝒖𝑟𝑟𝒗𝒗𝑟𝑟𝑇𝑇

This reduces the total number of weights from 𝑘𝑘(𝑚𝑚 + 𝑛𝑛 + 1) to r(𝑚𝑚 + 𝑛𝑛 + 1). For instance, using 1/3 of

the original rank, we can approximate a 1000 × 1000 matrix with 333(1000 + 1000 + 1) = 666,333 weight val-
ues, achieving a compression rate of approximately 33.366 % compared to the original 1,000,000 weight values.

Application to Convolutional Layers

A convolutional layer is a 4-dimensional tensor with dimensions:

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ × #𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × #𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Given that SVD is restricted to 2-dimensional matrices, it cannot be directly applied to our convolutional layer. How-
ever, the principle of selecting the 𝑟𝑟 largest singular values can be extended to higher-order tensors through CP de-
composition and Tucker decomposition. The first method employs CP decomposition, which breaks down the convo-
lutional layer into multiple rank 1 tensors. The second method utilizes Tucker decomposition, which decomposes the
convolutional layer into a compact core tensor and several matrices. These tensor decomposition techniques are akin
to performing a higher-order singular value decomposition (HOSVD) on the convolutional layers, resulting in faster
convolutions with fewer operations.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 4

Rank Selection Strategy

The selection of ranks was accomplished through a trial-and-error process. We found that 𝑅𝑅 = 𝑡𝑡/3, 𝑅𝑅3 = 𝑠𝑠/3, and
𝑅𝑅4 = 𝑡𝑡/3 yield satisfactory results. 𝑅𝑅 is the rank used in CP decomposition; it represents the number of components
in the decomposition, each of which is a rank-one tensor. 𝑅𝑅3 and 𝑅𝑅4 are the ranks used in the Tucker decomposition
for the third and fourth modes of the tensor, respectively. It is important to note that a higher rank leads to a better
approximation but less speed-up, and vice versa.

Canonical Polyadic Decomposition

Overview

The CP decomposition is perceived as a higher-order extension of matrix Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA). During the CP decomposition process, the canonical rank is the smallest pos-
sible 𝑅𝑅. While SVD can accurately compute low-rank approximations in a two-dimensional space, there is no defini-
tive procedure for determining a tensor's canonical rank when computing in dimensions greater than two. Conse-
quently, most algorithms can only approximate the rank 𝑅𝑅 until the error is sufficiently small.

The CP decomposition is a method of expressing a tensor as a sum of rank-1 tensors. For a tensor 𝑋𝑋 ∈ ℝ𝐼𝐼×𝐽𝐽×𝐾𝐾 ,
the CP decomposition can be written as:

Equation 5. Canonical Polyadic (CP) Decomposition of a Tensor

𝑋𝑋 = �𝑎𝑎𝑟𝑟 ∘ 𝑏𝑏𝑟𝑟 ∘ 𝑐𝑐𝑟𝑟

𝑅𝑅

𝑟𝑟=1

where 𝑎𝑎𝑟𝑟 ∈ ℝ𝐼𝐼, 𝑏𝑏𝑟𝑟 ∈ ℝ𝐽𝐽, 𝑐𝑐𝑟𝑟 ∈ ℝ𝐾𝐾 are vectors, ∘ denotes the outer product, and 𝑅𝑅 is the rank of the decomposition.
The proof of CP decomposition is based on the fact that any tensor can be written as a sum of rank-1 tensors. This is
a consequence of the tensor product definition and the linearity of tensor operations.

Figure 2. CP Decomposition. This illustration represents the approximation of a three-dimensional tensor, denoted
as 𝑋𝑋, through the sum of the outer products of three column vectors. Each column vector corresponds to a specific
dimension of the tensor. The vectors are combined using the outer product operation, which results in a rank-1 tensor.
The sum of these rank-1 tensors then approximates the original tensor 𝑋𝑋.

This concept is extendable to higher dimensions. For a four-dimensional tensor, an additional column vector

would be incorporated into the process, resulting in the sum of the outer products of four column vectors. This flexible
methodology allows for the decomposition of tensors of varying dimensions, providing a robust tool for tensor analysis

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 5

and simplification. Using CP decomposition, our convolutional kernel, a 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡), can be
approximated for a chosen rank 𝑅𝑅:

Equation 6. Approximation of a 4-Dimensional Tensor using CP Decomposition

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) = �𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖) 𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗) 𝐾𝐾𝑟𝑟𝑠𝑠(𝑡𝑡)𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)

𝑅𝑅

𝑟𝑟=1

The superscripts: 𝑥𝑥, 𝑦𝑦, 𝑠𝑠, 𝑡𝑡 denotes the 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡, #𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, #𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 modes, respec-
tively. 𝐾𝐾𝑟𝑟 denotes the 𝑟𝑟-th row/column vector of that specific mode matrix.

Plugging this into the formula for the convolutional layer output from above will result in:

Equation 7. Convolutional Layer Output using CP Decomposition

𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ����𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗)𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠)𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅

𝑟𝑟=1

= �𝐾𝐾𝑟𝑟𝑡𝑡(𝑡𝑡)��𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟
𝑦𝑦(𝑗𝑗)�𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠)𝑈𝑈(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅

𝑟𝑟=1

Algorithm 1: CP Decomposition for Convolutional Layer

Input: Convolutional layer 𝐿𝐿 and rank 𝑅𝑅

Output: A sequence of decomposed layers 𝐿𝐿′

1. Extract the 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) from the convolutional layer 𝐿𝐿.
2. Approximate the tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) using CP Decomposition for a chosen rank 𝑅𝑅: (Equation 6)
3. Substitute the approximated tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) into the formula for the convolutional layer output: (Equation

1)
4. Perform a pointwise convolution (1×1×S) with the kernel 𝐾𝐾𝑟𝑟𝑠𝑠(𝑠𝑠) to reduce the number of input channels from

𝑆𝑆 to 𝑅𝑅.
5. Apply separable convolutions in the spatial dimensions with 𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖) and 𝐾𝐾𝑟𝑟

𝑦𝑦(𝑗𝑗), which are the depth-wise
horizontal and vertical layers.

6. Perform an additional point-wise convolution operation to transform the number of channels from 𝑅𝑅 to 𝑇𝑇,
maintaining the same number of outputs.

7. Return the sequence of decomposed layers 𝐿𝐿′.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 6

Figure 3. This figure presents a transformation of a PyTorch Conv2D layer using CP Decomposition. The original
Conv2D layer, with 3 input channels and 64 output channels, is shown at the top. It uses a 3x3 kernel size, a stride of
1, and a padding of 1. The transformed layer, shown at the bottom, is a sequential composition of four Conv2D layers.
The first layer reduces the number of input channels from 3 to the chosen rank R (in this case, R=16) using a 1x1
kernel, essentially performing a pointwise convolution. The second and third layers apply separable convolutions in
the spatial dimensions with a 3x1 and 1x3 kernel respectively, performing depth-wise horizontal and vertical convo-
lutions. The final layer transforms the number of channels from R back to the original number of output channels (64)
using another 1x1 pointwise convolution.

This transformation significantly reduces the spatial size (kernel) and padding size for each sequential layer, leading
to a more efficient computation while maintaining the same number of output channels. The CP Decomposition thus
allows for a more efficient representation of the original Conv2D layer.

Experiment

In our experiment, we implemented the CP-Decomposition on two distinct CNN architectures, namely VGG16 and
LeNet. Both models were trained on the MNIST dataset, which consists of 28x28 grayscale images categorized into
10 classes. Each model was subjected to 8 trials, each consisting of 15 epochs, with and without the application of
CP-Decomposition. The primary metrics of interest were the percentage of accuracy drop and the percentage of speed-
up, which were compared between the original and the decomposed models.

The speed-up was calculated by tracking the CPU timings for our models, thereby determining the ratio of
the computational speed of the CP model to the original model. The accuracy drop was determined by comparing the
model's performance on the test set before and after the application of CP-Decomposition.

Through the application of CP-Decomposition, we managed to reduce the number of parameters in the VGG
model from approximately 20 million to about 7 million, which is roughly a third of the original parameter count. This
reduction in parameters, while contributing to the speed-up, also resulted in a slight decrease in accuracy for each
epoch.

Table 1. Comparison of Performance Metrics for Original and CP-Decomposed Models

 LeNet LeNet w/ CP VGG16 VGG16 w/ CP
Time (s) 16.46 9.07 27.66 16.20

Speed-up (%) - 44.97 - 41.15
Accuracy (%) 98.91 98.78 98.90 98.81

Accuracy Drop (%) - 0.13 - 0.09

The results were promising. For the VGG16 model trained on the MNIST dataset, we observed an average
speed-up of 41.15%, accompanied by a minor accuracy drop of 0.09%. For the LeNet model, the speed-up was slightly
higher, averaging around 44.97%, with an average accuracy drop of 0.13%. Overall, we consistently achieved a speed-

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 7

up of approximately 2 times, with an accuracy loss of less than 0.12%. These results were encouraging, especially
considering the significant reduction in the number of parameters compared to the original network.

Both models, with CP-Decomposition, performed well on the MNIST dataset, demonstrating the ability to
compress the network without a significant loss in accuracy compared to the original, undecomposed network. How-
ever, it's worth noting that CP-Decomposition has limitations when dealing with larger networks and can be unstable.
The process is memory-intensive, and for convolutional layers larger than 512 x 512, the decomposition becomes
infeasible in terms of memory usage. Furthermore, the CP decomposed network is highly sensitive to the learning
rate, requiring it to be as small as 10^(-3) for effective learning.

These limitations, however, are rarely a concern in practice. It's uncommon for the size of a convolutional
layer to exceed 256 x 256, let alone 512 x 512. Additionally, the learning rate, while slower compared to some other
neural networks, is not excessively so. In fact, those aiming to train highly accurate models often set their learning
rates as low as 10^(-5) or even 10^(-6), making our learning rate moderate by comparison.

Tucker Decomposition

Overview

The Tucker Decomposition, also known as Higher Order Singular Value Decomposition (HOSVD), is a higher-order
generalization of matrix singular value decomposition (SVD). It is a method of expressing a tensor in terms of a core
tensor and multiple orthogonal factor matrices.

Given a tensor 𝑋𝑋 ∈ ℝ𝐼𝐼×𝐽𝐽×𝐾𝐾 , the Tucker decomposition can be written as:

Equation 8. Tucker Decomposition of a Tensor

𝑋𝑋 = 𝐺𝐺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3)

where 𝐺𝐺 ∈ ℝ𝑅𝑅1×𝑅𝑅2×𝑅𝑅3 is the core tensor, 𝑈𝑈(1) ∈ ℝ𝐼𝐼×𝑅𝑅1, 𝑈𝑈(2) ∈ ℝ𝐽𝐽×𝑅𝑅2 , 𝑈𝑈(3) ∈ ℝ𝐾𝐾×𝑅𝑅3 are orthogonal factor matrices,
and ×𝑛𝑛 denotes the n-mode product. The proof of Tucker decomposition is based on the multilinear algebra and the
existence of SVD for matrices. The Tucker decomposition is essentially a multilinear generalization of SVD, and the
existence of SVD guarantees the existence of Tucker decomposition.

Figure 4. Tucker Decomposition. This diagram illustrates the decomposition of a three-dimensional tensor, denoted
as X, into a smaller core tensor, denoted as G, and three orthogonal factor matrices, denoted as A, B, and C. Each
factor matrix corresponds to a specific mode or dimension of the tensor. The core tensor G captures the interactions
between the different modes of the tensor. The tensor X is then approximated by the multilinear product of the core
tensor G and the factor matrices A, B, and C. This multilinear product operation involves aligning the dimensions of
G with the corresponding factor matrices and summing over the aligned dimensions.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 8

The Tucker Decomposition concept is readily extendable to higher dimensions. For a four-dimensional ten-
sor, an additional orthogonal factor matrix would be incorporated into the decomposition process, resulting in a mul-
tilinear product of the core tensor and four factor matrices. This flexible methodology allows for the decomposition
of tensors of varying dimensions, providing a robust tool for tensor analysis and simplification.

For a kernel tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡), we can approximate it using the Tucker decomposition as follows:

Equation 9. Approximation of a 4-Dimensional Tensor using Tucker Decomposition

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) = � � � � 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4𝐾𝐾𝑟𝑟1
𝑥𝑥 (𝑖𝑖)𝐾𝐾𝑟𝑟2

𝑦𝑦(𝑗𝑗)𝐾𝐾𝑟𝑟3
𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4

𝑡𝑡 (𝑡𝑡)
𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

𝑅𝑅2

𝑟𝑟2=1

𝑅𝑅1

𝑟𝑟1=1

The components of 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4 are often orthogonal, which is why Tucker decomposition is considered a gen-

eralization of SVD. The core tensor 𝜎𝜎𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4 defines the interactions between different axes. Unlike the CP-decom-
position, where decomposition occurs in the spatial dimensions 𝐾𝐾𝑟𝑟𝑥𝑥(𝑖𝑖)𝐾𝐾𝑟𝑟

𝑦𝑦(𝑗𝑗) resulting in a spatially separable convo-
lution, the Tucker decomposition does not necessarily result in a significant reduction in computation, especially when
the filters are small (typically 3x3 or 5x5). Therefore, the approximation introduced by the Tucker decomposition is
less aggressive compared to the CP-decomposition.

The Tucker decomposition has the useful property that it doesn’t have to be decomposed along all the di-
mensions. Since the dimensions of the kernel is already small, we can decompose the tensor to:

Equation 10. Reduced Approximation of a 4-Dimensional Tensor using Tucker Decomposition

𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) = � � 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4(𝑗𝑗)𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)

𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

Plugging in the decomposed kernel in (1):

Equation 11. Convolutional Layer Output using Tucker Decomposition

𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ��� � � 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4(𝑗𝑗)𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑅𝑅4

𝑟𝑟4=1

𝑅𝑅3

𝑟𝑟3=1

𝑆𝑆

𝑠𝑠=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

= � 𝐾𝐾𝑟𝑟4
𝑡𝑡 (𝑡𝑡)�� � 𝜎𝜎(𝑖𝑖)(𝑗𝑗)𝑟𝑟3𝑟𝑟4�𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠)𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗, 𝑠𝑠)

𝑆𝑆

𝑠𝑠=1

𝑅𝑅3

𝑟𝑟3=1

𝐽𝐽

𝑗𝑗=1

𝐼𝐼

𝑖𝑖=1

𝑅𝑅4

𝑟𝑟4=1

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 9

Method

Input: Convolutional layer 𝐿𝐿 and rank 𝑅𝑅
Output: A sequence of decomposed layers 𝐿𝐿′

1. Extract the 4-dimensional tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) from the convolutional layer 𝐿𝐿.
2. Approximate the tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) using CP Decomposition for a chosen rank 𝑅𝑅: (Equation 10)
3. Substitute the approximated tensor 𝐾𝐾(𝑖𝑖, 𝑗𝑗, 𝑠𝑠, 𝑡𝑡) into the formula for the convolutional layer output: (Equation

1)
4. Perform a pointwise convolution (1×1×S) with the kernel 𝐾𝐾𝑟𝑟3𝑠𝑠 (𝑠𝑠) to reduce the number of input channels

from 𝑆𝑆 to 𝑅𝑅3.
5. Execute a standard convolution operation with the tensor 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟3𝑟𝑟4 . This tensor has 𝑅𝑅3 input channels and 𝑅𝑅4

output channels, which are fewer than the S input channels and T output channels in the original layer.
6. Apply another pointwise convolution operation with the matrix 𝐾𝐾𝑟𝑟4

𝑡𝑡 (𝑡𝑡) to achieve T output channels, which
is the same as the original convolution. This operation ensures that the output of the Tucker decomposition
matches the output dimensions of the original convolutional layer.

7. Return the sequence of decomposed layers 𝐿𝐿′.

Figure 6. Application of Tucker Decomposition to a PyTorch Conv2D Layer. This figure illustrates the transfor-
mation of a PyTorch Conv2D layer using Tucker Decomposition. The original layer, a Conv2D layer with 3 input
channels, 64 output channels, a kernel size of 3x3, stride of 1x1, and padding of 1x1, is decomposed into a sequence
of three layers. The first layer is a pointwise convolution (Conv2D) with 3 input channels and 3 output channels,
reducing the number of channels from the original 64 to 3. The second layer is a standard convolution (Conv2D) with
3 input channels and 16 output channels, further reducing the number of channels while maintaining the spatial di-
mensions. The kernel size is preserved at 3x3, with stride and padding unchanged. The final layer is another pointwise
convolution (Conv2D) that transforms the number of channels from 16 back to the original 64, ensuring the output
dimensions match those of the original layer. This sequence of operations significantly reduces the computational
complexity of the layer while preserving its functionality.

Like the experiment on CP-Decomposition, we will measure the results on our MNIST dataset with VGG16
and LeNet, and calculate the accuracy drop and speed up after 15 epochs. Similarly, we will loop over the layers and
replace the convolutional layers with their decomposition to speed up the entire network. The results are shown in the
graphs below:

In our study, we applied Tucker decomposition to two CNN architectures, VGG16 and LeNet, which were
trained to classify 28×28 images into 10 categories from the MNIST dataset. Similar to the CP-Decomposition exper-
iment, we conducted 8 trials with 15 epochs each, both with and without Tucker decomposition, and compared the
percentage of accuracy drop and speed up.

Likewise, we collected two types of data for the experiment: the speed up and the drop in accuracy. We
monitored the CPU timings for our models to calculate the speed up ratio of the Tucker model to the original model.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 10

By iterating over the layers and replacing the convolutional layers with their decompositions, we were able to reduce
the number of parameters, thereby increasing the computational efficiency.

Table 2. Performance Comparison of LeNet and VGG16 with Tucker Decomposition

 LeNet LeNet w/ Tucker VGG16 VGG16 w/ Tucker
Time (s) 16.66 10.66 33.86 21.20

Speed-up (%) - 36.11 - 37.42
Accuracy (%) 98.83 98.66 98.98 98.83

Accuracy Drop (%) - 0.17 - 0.15

For VGG16 on MNIST, we observed a 37.42% speed-up on average, with an accuracy drop of 0.15%. For
LeNet, we achieved an average speed up of around 36.11% with an accuracy drop of 0.17% on average. Despite the
reduction in accuracy, the Tucker decomposition demonstrated a significant speed-up, which is beneficial in scenarios
where computational resources are limited.

Interestingly, Tucker decomposition demonstrated a higher level of success in decomposing larger networks
compared to CP decomposition, as it required fewer computational resources in terms of runtime and memory. Fur-
thermore, Tucker decomposition was more flexible in terms of learning rate, which could be advantageous for faster
learning.

Both CP and Tucker decompositions offer valuable tools for enhancing the computational efficiency of con-
volutional neural networks. While CP decomposition may result in a smaller accuracy drop, Tucker decomposition
provides greater flexibility and is more suitable for larger networks.

Discussion

The exploration of tensor decomposition methods in this research has provided valuable insights into the optimization
of CNNs. Our experiments with CP and Tucker decompositions have demonstrated the potential of these techniques
in enhancing the efficiency of CNNs, particularly in terms of computational speed and memory usage.

For both VGG16 and LeNet architectures, CP Decomposition achieved an average speed up of 42% with an
accuracy drop of less than 0.12%. Tucker Decomposition, on the other hand, achieved an average speed up of 37%
with an accuracy drop of less than 0.16%. VGG16, due to its larger size and complexity, performed slower than LeNet
in all experiments. However, its additional layers provide the potential for learning more powerful and complex fea-
tures. The observations highlight the trade-offs between speed, accuracy, and flexibility in tensor decomposition meth-
ods.

The choice between CP and Tucker Decomposition depends on the specific requirements of the task. CP
Decomposition is well-suited for processing smaller and medium-sized images, while Tucker Decomposition is more
appropriate for larger and more complex images.

Conclusion

In this study, we explored the application of two tensor decomposition methods, CP Decomposition and Tucker De-
composition, to enhance the computational efficiency of convolutional neural networks (CNNs). Our approach in-
volved reducing the number of parameters within the network, thereby accelerating the runtime without incurring a
substantial loss in accuracy. CP Decomposition, while faster, exhibited limitations in terms of memory usage and
learning rate. On the other hand, Tucker Decomposition, though slightly slower, demonstrated greater versatility and
was not constrained by memory or learning rate issues. This was due to its ability to retain the four-dimensional tensor
structure, albeit in a reduced form.

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 11

In terms of practical implications, the tensor decomposition methods explored in this research could be ap-
plied to optimize a wide range of applications that utilize CNNs, such as autonomous driving, medical imaging, doc-
ument analysis, and segmentation.

Limitations

Despite their limitations, these decomposition methods are rarely problematic. For instance, it is uncommon for a
CNN layer to exceed 256×256 in size, which would render CP Decomposition infeasible. Similarly, the learning rate
for Tucker Decomposition is only moderately slow, which is acceptable in many scenarios. The methodologies pro-
posed in this study have broad applications.

Looking forward, we aim to further enhance the performance of CNNs by addressing the limitations of both
CP and Tucker Decompositions. Our future work will explore the use of Tensor Train Decomposition, which promises
to offer a balance between versatility and speed, thereby providing a robust solution for optimizing CNNs.

References

[1] Rabanser S., Shchur O., and Günnemann S. “Introduction to Tensor Decompositions and their Applications in

Machine Learning.” 2017. https://doi.org/10.1007/978-3-319-68837-4_1
[2] LeCun, Yann, Boser, Bernhard, Denker, John S, Henderson, Donnie, Howard, Richard E, Hubbard, Wayne, and

Jackel, Lawrence D. Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989. https://doi.org/10.1162/neco.1989.1.4.541

[3] Tianshui Chen, Liang Lin, Wangmeng Zuo, Xiaonan Luo, Lei Zhang. "Learning a Wavelet-Like Auto-Encoder
to Accelerate Deep Neural Networks" https://doi.org/10.1109/TNNLS.2018.2790381

[4] Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales. "Deeper, Broader and Artier Domain
Generalization" https://doi.org/10.1109/ICCV.2017.322

[5] Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus-Robert Müller, Alexandre Tkatchenko.
"Quantum-chemical insights from deep tensor neural networks" https://doi.org/10.1038/ncomms13890

[6] Kolda G. Tamara, and Baer W. Brett. “Tensor Decompositions and Applications.” SIAM Review Vol. 51, No.3
pp. 455-500, 2009. https://doi.org/10.1137/07070111X

[7] Ueltschi T., University of Puget SoundTacoma, Washington, USA. “Third-Order Tensor Decompositions and
Their Application in Quantum Chemistry.” 2014. https://doi.org/10.1021/ct500847y

[8] Lebedev V., Ganin Y., Rakhuba M., Oseledets I., and Lempitsky V., Skoltech, Moscow, Russia. “Speeding-up
Convolutional Neural Networks Using Fine-Tuned CP-Decomposition.” 2015. https://doi.org/10.1007/978-3-
319-49409-8_29

[9] Kim Y., Park E., Yoo S., Choi T., Yang L., and Shin D., Samsung Electronics and Seoul National University,
South Korea, “Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile
Applications.” 2016. https://doi.org/10.1109/ICLR.2016.261

[10] Nakajima S., Sugiyama M., Babacan S. Derin, and Tomoika R., “Global Analytic Solution of Fully-observed
Variational Bayesian Matrix Factorizatoin.” 2013. https://doi.org/10.5555/3042817.3043083

[11] Tucker R. L., “Some mathematical notes on three-mode factor analysis.” 1966.
https://doi.org/10.1080/01621459.1966.10480843

[12] Chellapilla, Kumar, Puri, Sidd, and Simard, “High performance convolutional neural networks for document
processing.” 2006. https://doi.org/10.1109/TNN.2006.880583

[13] De Lathauwer L., De Moor B., and Vanderwalle J., “A Multilinear Singular Value Decompsotion.” 2000.
SIAM Vol.21 Iss. 4. https://doi.org/10.1137/S0895479896305696

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 12

https://doi.org/10.1007/978-3-319-68837-4_1
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/TNNLS.2018.2790381
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1137/07070111X
https://doi.org/10.1021/ct500847y
https://doi.org/10.1007/978-3-319-49409-8_29
https://doi.org/10.1007/978-3-319-49409-8_29
https://doi.org/10.1109/ICLR.2016.261
https://doi.org/10.5555/3042817.3043083
https://doi.org/10.1080/01621459.1966.10480843
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1137/S0895479896305696

[14] Minister R., Viviano I., Liu X., Ballard G., “CP Decomposition For Tensors Via Alternating Least Squares
With QR Decomposition.” 2021. https://doi.org/10.1109/ICASSP39728.2021.9414887

[15] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, 2015. https://doi.org/10.48550/arXiv.1409.1556

[16] Ye, Jieping. Generalized low rank approximations of matrices. Machine Learning, 61(1-3):167–191, 2005.
[17] Shashua, Amnon and Hazan, Tamir. Non-negative tensor factorization with applications to statistics and

computer vision. In Proceedings of the 22nd international conference on Machine learning, pp. 792–799. ACM,
2005. https://dl.acm.org/doi/10.1145/1102351.1102451

[18] Gossmann A., “Understanding the Tucker decomposition, and compressing tensor-value data.” 2017. [Online]
Available: https://www.alexejgossmann.com/tensor_decomposition_tucker/

[19] Cohen J., Gusak J., Hashemizadeh M., Kossaifi J., Meurer A., Mo Y. Mardal, Patti T. Lee, Roald M., and Tuna
C., Tensorly Tensor Decompositions. 2015. [Online] Available:
http://tensorly.org/stable/modules/api.html#module-tensorly.decomposition

[20] Razin N., Maman A., and Cohen N., “Implicit Regularization in Tensor Factorization: Can Tensor rank Shed
Light on Generalization in Deep Learning.” 2021. [Online] Available:
http://www.offconvex.org/2021/07/08/imp-reg-tf/

Volume 12 Issue 3 (2023)

ISSN: 2167-1907 www.JSR.org/hs 13

https://doi.org/10.1109/ICASSP39728.2021.9414887
https://doi.org/10.48550/arXiv.1409.1556
https://dl.acm.org/doi/10.1145/1102351.1102451
https://www.alexejgossmann.com/tensor_decomposition_tucker/
http://tensorly.org/stable/modules/api.html#module-tensorly.decomposition
http://www.offconvex.org/2021/07/08/imp-reg-tf/

	In the context of convolutional weights, this results in 𝑘𝑚+𝑘𝑛+𝑘=𝑘(𝑚+𝑛+1) weight values. However, by taking the 𝑟 largest singular values, we obtain an approximation ,𝐴-𝑟.:
	Equation 4. Rank-r Approximation of Matrix A using SVD
	,𝐴-𝑟.= ,𝜎-1.,𝒖-1.,𝒗-1-𝑇.+ ,𝜎-2.,𝒖-2.,𝒗-2-𝑇.+ …+,𝜎-𝑟.,𝒖-𝑟.,𝒗-𝑟-𝑇.
	This reduces the total number of weights from 𝑘(𝑚+𝑛+1) to r(𝑚+𝑛+1). For instance, using 1/3 of the original rank, we can approximate a 1000 × 1000 matrix with 333,1000+1000+1.=666,333 weight values, achieving a compression rate of approximately ...
	The CP decomposition is a method of expressing a tensor as a sum of rank-1 tensors. For a tensor 𝑋∈,ℝ-𝐼×𝐽×𝐾., the CP decomposition can be written as:
	Equation 5. Canonical Polyadic (CP) Decomposition of a Tensor
	𝑋=,𝑟=1-𝑅-,𝑎-𝑟.∘,𝑏-𝑟.∘,𝑐-𝑟..
	where ,𝑎-𝑟.∈,ℝ-𝐼., ,𝑏-𝑟.∈,ℝ-𝐽., ,𝑐-𝑟.∈,ℝ-𝐾. are vectors, ∘ denotes the outer product, and 𝑅 is the rank of the decomposition. The proof of CP decomposition is based on the fact that any tensor can be written as a sum of rank-1 tensors. This ...

