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ABSTRACT 
 
The problem of space debris from human sources is increasing exponentially and satellites are at a constant risk of 
encountering them while moving in orbit. The current process of debris classification and avoidance is tedious and is 
done manually and soon with the ever-increasing debris problem, it is not going to take us a long way. Thus, the main 
question now is how satellites can use computer programming efficiently to classify incoming debris (as potentially 
harmful or not) and change/move their orbit to avoid incoming debris in space without any manual effort? To start 
thinking on this topic, reading a few sources (listed in reference) already published on this topic was necessary. Using 
the gathered information, I framed an algorithm on how the debris can be classified as potentially harmful or not and 
actions to be taken depending on the situation. I also framed a program as a kind of a blueprint to explain the logic on 
which this program can be written and built upon in the future. To do this I enriched my knowledge of 3D geometry 
by reading various articles. Numerous tests were done on the program and based on those I kept on correcting the 
main program and adding more detailed cases thus, leading to the final program. 
 

Introduction 
 
There has been a vast development in the field of satellites and space ever since Sputnik - 1, the first satellite to be 
ever launched, was put into orbit. Rapid development in the space field gave rise to an increased number of rockets 
launches and satellites and other manmade objects in space which thus, resulted in increased space waste but what is 
this space waste and why does it necessarily concern us? The debris left in space during missions like rocket boosters, 
explosive bolts which fragment into pieces (which are one time usable), retired satellites, paint chips, cameras, screws 
etc. Which to revolve around the earth in orbits are called space debris 

Orbits slowly decay overtime, and the debris reaches the Earth but this process takes a lot of time. According 
to NASA [3], debris left in orbits below 370 miles (600 km) normally fall back to Earth within several years. At 
altitudes of 500 miles (800 km), the time for orbital decay is often measured in decades. Above 620 miles (1,000 km), 
orbital debris normally will continue circling Earth for a century or more and with the increase in the number of debris, 
efficient avoidance of debris is extremely important for satellites moving in space. There is a high chance that these 
debris collide with satellite and damage expensive equipment. They can tear through solar panels of the satellites or 
can even damage computers onboard or maybe a large piece can even destroy a satellite completely if not avoided. As 
of 2021, the United States Space Surveillance Network was tracking more than 15,000 pieces of space debris larger 
than 10 cm (4 inches) across. It is estimated that there are about 200,000 pieces between 1 and 10 cm (0.4 and 4 
inches) across and that there could be millions of pieces smaller than 1 cm [5]. Currently the process of debris avoid-
ance is extremely stressful and constant monitoring of the satellite and incoming debris has to be done and manual 
orbit adjustment has to be done. The objects larger than 10 cm can be easily tracked and can be avoided but the small 
ones are difficult to track(however). Soon, with the increasing number of debris, keeping track of these debris will 
become difficult manually and the satellite will somehow have to manage dodging the debris by themselves. Space 
debris can be added due to accidents as well. For example, on 10th February 2009 , an active commercial satellite 
Iridium-33 and derelict Russian military Kosmos 2251 collided with each other causing 1000s of debris to be scattered 
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in space[6]. Space debris have caused damage in the past and if we don’t avoid them, another collision is likely to 
occur soon.  

In this research paper, I have tried to explain a basic program which I have framed that satellites can use to 
avoid single incoming debris automatically. I have explained the design of the program which consists of the algorithm 
on which I coded it, each case of the program with its respective outputs and different assumptions to be considered 
while using this program and their derivations. Some articles have also been cited which helped me with the program-
ming. Along with that I have also used graphs from GeoGebra.com to explain how the different cases would look 
like in 3D space and to check the validity of the cases. 
 

Design 
 

❖ Assumptions/Approximations to be considered while using the program: 
 

1. We assume that the satellite’s position, velocity, and orbit equation is known and it can measure the relative 
position and velocity of incoming debris using onboard equipment available. 
For relative velocity, we consider the satellite to be of fixed origin. The x axis is sideways, y axis upwards 
and z axis forward. 

 
Fig 1: Displays the axes for the satellite’s relative coordinates. 
 

2. We assume the center of earth as the center of the absolute coordinate system since the center doesn’t ro-
tate. 

3. We consider all objects detected to fall within measurable parameters (i.e., more than 10cm wide) 
 

4. We assume a single debris-satellite system. (Most common) 
 

5. We assume the satellite to be moving in a straight-line path for a few kilometers. We consider local lineari-
zation till the point the error between the straight line assumed and the elliptical path becomes 5% beyond 
which we will have to switch to a different line. The linearization problem mainly arises at the curved path 
of the ellipse where chances of curving become more. Let us thus, calculate what is the minimum distance 
for which local linearization is valid and can be safely assumed. 
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Let us consider a Molniya orbit in a particular plane (it can be assumed 2D and let us consider the x-y coordinate 
system: 

 
● A Molniya orbit is an orbit followed by Soviet Satellites which have maximum eccentricity for an 

Earth orbiting satellite [6] . 
 
Let us consider a vertical tangent point on the positive x-axis. Let c be the distance between satellite and 
vertical tangent at the point. 
 
Point P≡ (acos𝜃𝜃,bsin𝜃𝜃)according to the parametric form. Thus, 𝑐𝑐 = 𝑎𝑎 − 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝜃𝜃.  
 

For Molniya orbit, 
          𝑎𝑎 (𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎 𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙ℎ)  =  2𝑅𝑅ₑ 

𝑏𝑏 (𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑙𝑙𝑎𝑎𝑚𝑚 𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎 𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙ℎ)  =  𝑅𝑅ₑ   (𝑹𝑹ₑ = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒐𝒐𝒐𝒐 𝑬𝑬𝒓𝒓𝒓𝒓𝑬𝑬𝑬𝑬 ≈  𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 𝒌𝒌𝒌𝒌) 
 

 
 
Fig 2: Elliptical coordinates with relevant labels for calculating linear approximation validity.  
 
 
If we must assume 5% error,  

           𝒄𝒄
𝒓𝒓
= 𝒓𝒓−𝒓𝒓𝒄𝒄𝒐𝒐𝒓𝒓𝒂𝒂

𝒓𝒓
 =   0.05 

So, from here we get 𝜃𝜃 = 𝟏𝟏𝟏𝟏° 
𝑐𝑐 = 𝑎𝑎 − 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝜃𝜃 = 𝑎𝑎(1 − 𝑐𝑐𝑎𝑎𝑎𝑎𝜃𝜃) = 2Rₑ ∗ 0.05 
 
𝑌𝑌 =  𝑏𝑏𝑎𝑎𝑠𝑠𝑙𝑙𝜃𝜃 =  𝑅𝑅ₑ𝑎𝑎𝑠𝑠𝑙𝑙17° =  0.29𝑅𝑅ₑ 
 
Distance wise,  
d= �𝑐𝑐² +  𝑌𝑌² ≈1840 km  
 
Therefore, the minimum distance over which linearization is valid is 1840 km. This distance is sufficient to linearize 
any incoming positional data relayed by sensors onboard the satellite.  
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❖ Structure of program/algorithm on which program is based: 
 

The program tries to find out whether the debris and satellite intersect at a point or not as a first crite-
rion and then recommends firing in a for a particular time to avoid debris. Step by step algorithm is: 

 
1. Take inputs which include position and velocity of satellite and relative position and velocity of debris with 

respect to satellite and satellite size 
2. Convert everything to absolute coordinate system 
3.   Find unit vectors of satellite and debris velocity and their cross product (whether the cross-product result 

is valid or not can be through different conditions) 
4.  Use a parametric equation of line of the debris and the satellite and we equate them and find parametric 

simultaneous equations. (The parametric variables in this case indicate time so they must always be 
positive).  We solve the parametric equation in each coordinate differently. 

5. Depending on the three simultaneous equations and the parametric variables on solving those equations, we 
can create different cases [1] according to which we decide if they intersect or not.  
 

6. If they do, we apply firing in the cross-product direction for a particular time or if they don’t, we terminate 
the operation. 

 

Actual Program: 
 
➔ This is the actual program I framed in Python (Note: This program is just a blueprint or 

logic on basis of which the algorithm can be implemented): 
from scipy import linalg  
import numpy as np 
import math 
psx= float(input("Position x coordinate of satellite:")) 
psy = float(input("Position y coordinate of satellite:")) #line 5 
psz = float(input("Position z coordinate of satellite:")) 
vsx = float(input("Velocity x coordinate of satellite:"))  
vsy = float(input("Velocity y coordinate of satellite:")) 
vsz = float(input("Velocity z coordinate of satellite:")) 
rpdx = float(input("Enter x position  of debris relative to satellite:")) #line 10 
rpdy = float(input("Enter y position of debris relative to satellite:")) 
rpdz = float(input("Enter z position of debris relative to satellite:")) 
rvdx = float(input("Enter x velocity of debris relative to satellite:"))  
rvdy = float(input("Enter y velocity of debris relative to satellite:")) 
rvdz = float(input("Enter z velocity of debris relative to satellite:")) #line 15 
satsize = float(input("Enter size of satellite:")) 
rpd = np.array([rpdx,rpdy,rpdz])  
rvd = np.array([rvdx,rvdy,rvdz]) 
ps = np.array([psx,psy,psz])  
vs = np.array([vsx,vsy,vsz]) #line 20 
magvs=(math.sqrt(pow(vs[0],2)+pow(vs[1],2)+pow(vs[2],2))) 
pd = rpd + ps  
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vd = rvd + vs 
magvd = (math.sqrt(pow(vd[0],2)+pow(vd[1],2)+pow(vd[2],2))) 
vdx = vd[0] #line 25 
vdy = vd[1] 
vdz = vd[2] 
pdx=pd[0]  
pdy=pd[1]   
pdz=pd[2] #line 30 
unitvs=vs/magvs 
unitvd=vd/magvd 
resdir1 = np.cross(unitvd,unitvs) 
resdir2 = np.cross(unitvs,unitvd) 
c1= pdx-psx #line 35 
c2 = pdy-psy  
c3= pdz-psz 
print("x velocity of debris",vdx,"y velocity of debris",vdy) #just printing velocities 
A=np.array([[vsx,-vdx],[vsy,-vdy]])  
B=np.array([[c1],[c2]]) #line 40 
if np.linalg.det(A)==0.0: 
  solve1=np.array([[vsx,-vdx],[vsz,-vdz]]) 
  solve2=np.array([[c1],[c3]]) 
  if linalg.det(solve1)==0.0:  
    if c1==c2: #line 45 
      if c1==c3: 
        print("They are coinciding") 
        if magvd==magvs: 
          print("Both moving together.No need to do anything.")  
          exit()#line 50 
        elif magvd>magvs:  
          print("Debris is faster than satellite.If debris is behind satellite then fire in perpendicular direction or 
else all ok.") 
          exit() 
        elif magvd<magvs: 
          print("Debris is slower than satellite.If debris is ahead satellite then fire in perpendicular direction or 
else all ok.") #line 55 
          exit() 
      else:  
        print("Both are parallel all ok.") 
        exit() 
    else: #line 60 
      print("They are parallel") 
      exit() 
  else: 
    solve3=linalg.solve(solve1,solve2)  
    t1= solve3[0,0] #line 65 
    u1=solve3[1,0] 
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    if t1>0 and u1>0: 
      if t1==u1 or abs(t1-u1)<=1: 
        print("Object intersect at one point.")  
        print("Fire in ",resdir1," or " , resdir2) #line 70 
        exit() 
      else: 
        print("Object will not meet at same time") 
        exit() 
    else: #line 75 
      print("All ok. False alarm.")  
      exit() 
else:  
  C=linalg.solve(A,B) 
  t=C[0,0]  #line 80 
  u=C[1,0] 
  print("t=",t,"u=",u)  
  if t>0 and u>0:   
     print("t=",t) 
     print("u=",u) #line 85 
     if (vsz*t)-(vdz*u)==pdz-psz:  
      print("The path of the objects have a common intersection point")  
      if t==u or abs(t-u)<=1:   
       print("Objects will meet at same time at same place")  
       print("Fire in direction",resdir1 , "or", resdir2) #line 90 
       exit() 
      elif abs(t-u)>=1:  
       print("Objects will not meet at same time") 
       exit() 
     else: #line 95 
      print("The two orbits are skew lines") 
      s=np.cross(vs,vd) 
      diff=pd-ps  
      mag =np.linalg.norm(s)             
      q = s/mag #line 100 
      sd= abs(np.dot(diff,q))  
      print(sd , " is the shortest distance between satellite and debris.") 
      if sd<=(3*satsize) :  
        if t==u  or abs(t-u)<=1:  
         print("Satellites too close. Change path by firing in",resdir1,"or",resdir2) #line 105 
        else:  
          print("All oK") 
      else:  
        print("ALL ok.")       
  else:  #line 110 
    print("All ok")  
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➔ Program Explanation: 
1.  From start till cases: 
● Of course, the first three lines correspond to importing different libraries required to write the program. I 

have used the linalg function from scipy library, imported numpy(as np) and imported math library. 
 

● From line 4 - line 15, the variables which are to be inputted are: psx,psy and psz correspond to the absolute 
position of the satellite in x,y and z direction. vsx,vsy and vsz correspond to the absolute velocity of the 
satellite in x,y and z direction. rpdx,rpdy and rpdz correspond to the relative position of debris with respect 
to satellite. rvdx, rvdy and rvdz correspond to the relative velocity of the debris in x,y and z direction. func-
tion 
 

● According to point 1 of Assumptions, we get the position of the satellite with respect to the center of Earth 
but for debris we will have to find using relative concept. We have to find these relative quantities using the 
coordinate system I have drawn before. 
 

●  In line 16, we also input satsize which is the size of the satellite required for setting the closest approach 
limit. 
 

● Next in line 17, we write rpdx,rpdy and rpdz combined together as rpd(relative position of debris) vec-
tor(rpd=np.array[rpdx,rpdy , rpdz]).  
➢ np represents a numpy library imported as np and an array function from numpy is used to repre-

sent a vector as a 1D array.  
The rpd vector corresponds to a random position recorded at a particular point in time. Similarly rvdx , 
rvdy and rvdz are combined together as rvd(relative velocity of debris vector) in line 18. 
 

● Similarly on combining psx,psy and psz , we get the ps(position of satellite) vector in line 19. The position 
vector just refers to a random recorded position of the satellite at a point in time in its orbit(the time at 
which we consider the position vector doesn't matter).On combining vsx,vsy and vsz we get vs(velocity of 
satellite) vector in line 20. 
 

● In line 21, we also define a new variable magvs which is used to find the magnitude of vector vs. 
The magnitude of a vector 𝐴𝐴 ���⃗ = (𝐴𝐴𝑥𝑥,𝐴𝐴𝑦𝑦 ,𝐴𝐴𝑧𝑧) is given by  

�𝐴𝐴 ���⃗ �= �𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑧𝑧2  (where 𝐴𝐴𝑥𝑥  ,𝐴𝐴𝑦𝑦 ,𝐴𝐴𝑧𝑧 are x , y and z components of vectors but if we take our case 

where the vector’s tail is at origin , they are equal to the x,y and z coordinate of the vectors) 
 
➢ pow() function is used to raise a variable to a particular power(i.e., 2 in this case) and the sqrt() 

function of the math library is used to take the square root of a quantity. 
 

● Now, according to relative motion concept, 
Absolute debris position vector(pd) = Relative debris position vector with respect to satellite + Absolute 
position vector  of satellite 
∴ pd = rpd + ps (line 23) 
Similarly for velocity,  

               vd = rvd + vs (line 24) 
 

● We also define one more variable magvd in line 25 which is the magnitude of the vd vector. 
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● Now from line 25- line 27, using indexes used to find array elements, we find vdx(x coordinate of vd vec-
tor) , vdy(y coordinate of vd vector) and vdz( z coordinate of vd vector). Similarly we find pdx , pdy , pdz 
of the pd vector from line 28-line 30. 
 

● We also find the unit vector for the vd vector. 
Let 𝐴𝐴 ���⃗ be a vector and let �̂�𝐴 be its unit vector 
�𝐴𝐴� is magnitude of 𝐴𝐴 ���⃗ . 

 �̂�𝐴=   𝐴𝐴 ���⃗

��⃗�𝐴� 
  

 
Therefore, in case of vs vector, 
unitvs = 𝑣𝑣𝑣𝑣

𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣
   (line 31) 

Similarly, 
unitvd = 𝑣𝑣𝑣𝑣

𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣
  (line 32) 

 
● Now, in line 33 and line 34, to fire thrusters, the best direction (unit vector I mean) to fire them is perpen-

dicular to the plane i.e., perpendicular to the unit vector of velocity (I mean absolute when I don't mention 
anything) of both the debris and satellite. Thus, we use the  

➢ np.cross() function to find the cross product of unitvs and unitvd(whether the cross product 
will actually be used as a direction to fire or not depends on the different cases which will 
come ahead).  

Also, we know that both  𝐴𝐴 ���⃗ x 𝐵𝐵 ���⃗  and 𝐵𝐵 ���⃗ x 𝐴𝐴 ���⃗  are perpendicular to the plane of  𝐴𝐴 ���⃗ and  𝐵𝐵 ���⃗ .Thus, there are two 
directions possible perpendicular to the plane which are given by resdir1 = cross product of unitvd and 
unitvs taken in order (line 33) and  
resdir2=cross product of unitvs and unitvd taken in order (line 34). 

● Now, we must find out the parametric variables (t and u as given in the program). Here the parametric vari-
ables correspond to time.  

If we assume constant velocity (as stated before) over a short distance on a linear path [2] 
                                          �⃗�𝑣 = 𝛥𝛥 𝑟𝑟 

𝑡𝑡
             

where 𝛥𝛥 𝑚𝑚  is change in position and t is time over which change occurs. 
                                   ∴     �⃗�𝑣 ⋅ 𝑙𝑙 = 𝛥𝛥 𝑚𝑚  
 We can write �⃗�𝑣 as (𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦 , 𝑣𝑣𝑧𝑧) 
Let 𝑚𝑚0���⃗  be initial position vector (the position vector inputted) and 𝑚𝑚�����⃗ be a general vector. 
𝛥𝛥 𝑚𝑚  = 𝑚𝑚-  𝑚𝑚0���⃗  
∴ �⃗�𝑣 ⋅ 𝑙𝑙 = 𝑚𝑚]��⃗ -  𝑚𝑚0���⃗  
Therefore,  𝑚𝑚=  𝑚𝑚0���⃗  + �⃗�𝑣.t 
We can write  𝑚𝑚0���⃗  as ((𝑚𝑚0)�����⃗ 𝑥𝑥,(𝑚𝑚0)�����⃗ 𝑦𝑦, (𝑚𝑚0)�����⃗ 𝑧𝑧 ) 
Similarly, �⃗�𝑣 can be written as (�⃗�𝑣𝑥𝑥 , �⃗�𝑣𝑦𝑦 , �⃗�𝑣𝑧𝑧) 
 
𝑚𝑚 = ((𝑚𝑚0)�����⃗ 𝑥𝑥 , (𝑚𝑚0)�����⃗ 𝑦𝑦, (𝑚𝑚0)�����⃗ 𝑧𝑧 ) + t (�⃗�𝑣𝑥𝑥 , �⃗�𝑣𝑦𝑦 , �⃗�𝑣𝑧𝑧  ) 
Therefore, individually the equations can be written as  
 𝑚𝑚𝑥𝑥���⃗  = (𝑚𝑚0)�����⃗ 𝑥𝑥 + �⃗�𝑣𝑥𝑥.t 
 𝑚𝑚𝑦𝑦���⃗  = (𝑚𝑚0)�����⃗ 𝑦𝑦 + �⃗�𝑣𝑦𝑦.t 
 𝑚𝑚𝑧𝑧��⃗  = (𝑚𝑚0)�����⃗ 𝑧𝑧 + �⃗�𝑣𝑧𝑧.t 
Where 𝑚𝑚𝑥𝑥���⃗ ,𝑚𝑚𝑦𝑦���⃗ ,𝑚𝑚𝑧𝑧��⃗  are the component vectors of the general position vector 𝑚𝑚. 
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For satellite (parametric variable is t in this case) , 
𝒓𝒓�⃗ 𝒓𝒓 =  (𝒑𝒑𝒓𝒓𝒑𝒑,𝒑𝒑𝒓𝒓𝒑𝒑,𝒑𝒑𝒓𝒓𝒑𝒑) + 𝑬𝑬(𝒗𝒗𝒓𝒓𝒑𝒑,𝒗𝒗𝒓𝒓𝒑𝒑,𝒗𝒗𝒓𝒓𝒑𝒑) 

 
Note: We are assuming the tail of the position vector from origin, therefore, the three component vectors of the posi-
tion vector 𝑚𝑚𝑣𝑣 will be equal to the respective coordinates of the point 
 
Thus, for satellite let us assume the three-component vector to be  𝑐𝑐𝑎𝑎𝑥𝑥 , 𝑐𝑐𝑎𝑎𝑦𝑦  , 𝑐𝑐𝑎𝑎𝑧𝑧  .therefore, the three component vec-
tors will be: 
 

 𝑐𝑐𝑎𝑎𝑥𝑥 =  𝑝𝑝𝑎𝑎𝑎𝑎 +  𝑣𝑣𝑎𝑎𝑎𝑎. 𝑙𝑙 
 𝑐𝑐𝑎𝑎𝑦𝑦 =  𝑝𝑝𝑎𝑎𝑝𝑝 +  𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙 
 𝑐𝑐𝑎𝑎𝑧𝑧 =  𝑝𝑝𝑎𝑎𝑝𝑝 +  𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙 

 
For debris (the parametric variable in this case is u) let us assume the three component vectors to be  𝑐𝑐𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑐𝑐𝑦𝑦  
, 𝑐𝑐𝑐𝑐𝑧𝑧 .Therefore, the three equations will be  

 𝑐𝑐𝑐𝑐𝑥𝑥 =  𝑝𝑝𝑐𝑐𝑎𝑎 +  𝑣𝑣𝑐𝑐𝑎𝑎 ⋅ 𝑢𝑢 
 𝑐𝑐𝑐𝑐𝑦𝑦 =  𝑝𝑝𝑐𝑐𝑝𝑝 +  𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢 
 𝑐𝑐𝑐𝑐𝑧𝑧 =  𝑝𝑝𝑐𝑐𝑝𝑝 +  𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢 

Now, for the two objects to intersect at a point,    
 
 𝑐𝑐𝑎𝑎𝑥𝑥= 𝑐𝑐𝑐𝑐𝑥𝑥 (for x intersection) 
 𝑐𝑐𝑎𝑎𝑦𝑦= 𝑐𝑐𝑐𝑐𝑦𝑦 (for y intersection) 
 𝑐𝑐𝑎𝑎𝑧𝑧= 𝑐𝑐𝑐𝑐𝑧𝑧  (for z intersection) 
 
Therefore,  
 
𝑝𝑝𝑎𝑎𝑎𝑎 +  𝑣𝑣𝑎𝑎𝑎𝑎. 𝑙𝑙 = 𝑝𝑝𝑐𝑐𝑎𝑎 +  𝑣𝑣𝑐𝑐𝑎𝑎.𝑢𝑢 
∴  (𝑣𝑣𝑎𝑎𝑎𝑎 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑎𝑎 ⋅ 𝑢𝑢)  =  𝑝𝑝𝑐𝑐𝑎𝑎 − 𝑝𝑝𝑎𝑎𝑎𝑎 
𝐿𝐿𝑠𝑠𝑙𝑙 𝑝𝑝𝑐𝑐𝑎𝑎 − 𝑝𝑝𝑎𝑎𝑎𝑎 =  𝒄𝒄𝟏𝟏(𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠 35) 
∴  (𝑣𝑣𝑎𝑎𝑎𝑎 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑎𝑎 ⋅ 𝑢𝑢)  =  𝒄𝒄𝟏𝟏 (𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝑬𝑬𝒓𝒓𝒐𝒐𝒆𝒆 𝟏𝟏) 

 
𝑝𝑝𝑎𝑎𝑝𝑝 +  𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙 = 𝑝𝑝𝑐𝑐𝑝𝑝 +  𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢 
∴  (𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢)  =  𝑝𝑝𝑐𝑐𝑝𝑝 − 𝑝𝑝𝑎𝑎𝑝𝑝 
𝐿𝐿𝑠𝑠𝑙𝑙 𝑝𝑝𝑐𝑐𝑝𝑝 − 𝑝𝑝𝑎𝑎𝑝𝑝 =  𝒄𝒄𝟐𝟐 (𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠 36) 
∴  (𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢)  =  𝒄𝒄𝟐𝟐 (𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝑬𝑬𝒓𝒓𝒐𝒐𝒆𝒆 𝟐𝟐) 

 
𝑝𝑝𝑎𝑎𝑝𝑝 +  𝑣𝑣𝑎𝑎𝑝𝑝. 𝑙𝑙 = 𝑝𝑝𝑐𝑐𝑝𝑝 +  𝑣𝑣𝑐𝑐𝑝𝑝.𝑢𝑢 
∴  (𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢)  =  𝑝𝑝𝑐𝑐𝑝𝑝 − 𝑝𝑝𝑎𝑎𝑝𝑝 
𝐿𝐿𝑠𝑠𝑙𝑙 𝑝𝑝𝑐𝑐𝑝𝑝 − 𝑝𝑝𝑎𝑎𝑝𝑝 =  𝒄𝒄𝟑𝟑(𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠 37) 
∴  (𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢)  =  𝒄𝒄𝟑𝟑 (𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝑬𝑬𝒓𝒓𝒐𝒐𝒆𝒆 𝟑𝟑) 
 
Let us consider these three equations to be three lines. 
Now, let us consider equation 1 and equation 2 
(𝑣𝑣𝑎𝑎𝑎𝑎 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑎𝑎 ⋅ 𝑢𝑢)  =  𝒄𝒄𝟏𝟏  
(𝑣𝑣𝑎𝑎𝑝𝑝 ⋅ 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝 ⋅ 𝑢𝑢)  =  𝒄𝒄𝟐𝟐 

 
Note: These two equations and the properties of the lines of these two equations tell us if the lines along which 
the debris and satellite move intersect in the x-y coordinate system or not. 
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We can solve these two equations with the help of matrices. 
Then t and u can be obtained by solving, 

�𝑣𝑣𝑎𝑎𝑎𝑎 −𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝 −𝑣𝑣𝑐𝑐𝑝𝑝� ⋅ �

𝑙𝑙
𝑢𝑢� =  �

𝑐𝑐1
𝑐𝑐2� 

 
 Let: 

 𝐴𝐴 =  �𝑣𝑣𝑎𝑎𝑎𝑎 −𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝 −𝑣𝑣𝑐𝑐𝑝𝑝�(Line 39) 

  

𝐵𝐵 = �
𝑐𝑐1
𝑐𝑐2�  (𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠 40) 

  
Point i.]: Now, let us consider a matrix 

𝐻𝐻 =  �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑐𝑐�  

The determinant of this matrix (det H) = 𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑐𝑐 
Thus, if det H=0,  
𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑐𝑐 =  0 
𝑎𝑎𝑐𝑐 =  𝑏𝑏𝑐𝑐 
𝑎𝑎
𝑏𝑏

=
𝑐𝑐
𝑐𝑐

 

 
Point ii.]: Let us consider two lines having equations: 
𝑎𝑎1𝑎𝑎 + 𝑏𝑏1𝑝𝑝 + 𝑐𝑐1 = 0 
𝑎𝑎2𝑎𝑎 + 𝑏𝑏2𝑝𝑝 +  𝑐𝑐2 = 0 
 
 
For these two lines to be parallel, 
𝑎𝑎1
𝑏𝑏1

=  
𝑎𝑎2
𝑏𝑏2

≠
𝑐𝑐1
𝑐𝑐2

 

 
 
For these two lines to be coinciding/same,  
𝑎𝑎1
𝑏𝑏1

=  
𝑎𝑎2
𝑏𝑏2

=
𝑐𝑐1
𝑐𝑐2

 

 
 

2.  Cases: 
 

     Note: I might use different parametric variables in some hypothetical examples. However, 
in real examples corresponding to the input/output of the program I have used the paramet-
ric variables given in the program. (In case 1 , I have used t1 and u1 as parametric varia-
bles but in case 2 I have used t and u). 

 
Case 1: If det A = 0(line 41-line 77) 
Let us consider: 

𝐴𝐴 = �𝑣𝑣𝑎𝑎𝑎𝑎 −𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝 −𝑣𝑣𝑐𝑐𝑝𝑝� 
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If det A = 0, 
This means that, 
𝑣𝑣𝑎𝑎𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝

=  
−𝑣𝑣𝑐𝑐𝑎𝑎
−𝑣𝑣𝑐𝑐𝑝𝑝

=
𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑐𝑐𝑝𝑝

 

 
This means that equation 1 and equation 2 are parallel or coinciding. 
Let us keep this aside for the moment. 
Let us consider equation 1 and equation 3 now. 
 (𝑣𝑣𝑎𝑎𝑎𝑎. 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑎𝑎.𝑢𝑢)  =  𝑐𝑐1 
 (𝑣𝑣𝑎𝑎𝑝𝑝. 𝑙𝑙)  −  (𝑣𝑣𝑐𝑐𝑝𝑝.𝑢𝑢)  =  𝑐𝑐3 
To solve these two equations let us define two matrices. 

𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑠𝑠1 = �𝑣𝑣𝑎𝑎𝑎𝑎 −𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝 −𝑣𝑣𝑐𝑐𝑝𝑝� 

𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑠𝑠2 = �
𝑐𝑐1
𝑐𝑐3�  

 
Let us now consider two subcases: 

 
 Subcase 1: If det solve1=0(line 44-line 62): 

As explained before this means that 
𝑣𝑣𝑎𝑎𝑎𝑎
𝑣𝑣𝑎𝑎𝑝𝑝

=  
−𝑣𝑣𝑐𝑐𝑎𝑎
−𝑣𝑣𝑐𝑐𝑝𝑝

=
𝑣𝑣𝑐𝑐𝑎𝑎
𝑣𝑣𝑐𝑐𝑝𝑝

 

 
Thus, taking equation 1 and equation 3 into consideration, 
This means that either equation 1 and equation 3 are parallel or coinciding (Point ii.).  
Now, let us revert to equation 1 and equation 2.  
We already proved that either equation 1 and equation 2 are parallel or coinciding (Point ii.). This depends on 
whether constants 𝑐𝑐1 and  𝑐𝑐2 are equal or not. Thus, let us consider two more subcases: 

 
 Subcase A:  If  𝒄𝒄𝟏𝟏 = 𝒄𝒄𝟐𝟐 (line 45-line 60) 

This indicates that the two lines are coinciding in nature i.e., the two lines are one over the other.  
Now again let us revert to equation 1 and equation 3. Similarly, for them to be parallel or coinciding depends on 
whether constants 𝑐𝑐1 and  𝑐𝑐3 are equal or not. Thus, let us consider two more subcases: 

 
 Subcase (i):   𝒄𝒄𝟏𝟏 = 𝒄𝒄𝟑𝟑 (line 46- line 56) 

This means that equation 1 and equation 3 are coinciding i.e., one over the other. We have already proved in subcase 
A that equation 1 and equation 2 are coinciding and we have also proved that equation 1 and equation 3 are coincid-
ing. This brings us to the combined result that the lines along which debris and satellite are moving are the same/co-
inciding.  
For example, let us consider two lines in 3D. 
𝐿𝐿1 = (2,2,2) + 𝜆𝜆1 ⋅ (2,2,2) 
 
𝐿𝐿2 = (4,4,4) + 𝜆𝜆2 ⋅ (4,4,4) 
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If we split it into three equations, we get: 

 

For 𝐿𝐿1                                          For 𝐿𝐿2 

2 + 2𝜆𝜆1(𝑓𝑓𝑎𝑎𝑚𝑚 𝑎𝑎)   
2 + 2𝜆𝜆1(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝)                    
2 + 2𝜆𝜆1(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝)                                     

4 + 4𝜆𝜆2(𝑓𝑓𝑎𝑎𝑚𝑚 𝑎𝑎)   
4 + 4𝜆𝜆2(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝)                   
4 + 4𝜆𝜆2(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝) 
                                    

 
Solving the two systems individually for x, y and z we get  
2𝜆𝜆1 − 4𝜆𝜆2 = 2 
i.e., 𝜆𝜆1 − 2𝜆𝜆2 = 1(for all x,y as well as z) 
 
We can thus, see that for equation 1 and 2, 
1
1

= −2
−2

  and 𝑐𝑐1 = 𝑐𝑐2 = 1 
Thus, equation 1 and equation 2 are coinciding. 
 
We can thus, see that for equation1 and 3, 
1
1

= −2
−2

  and 𝑐𝑐1 = 𝑐𝑐3 = 1 
Thus, equation 1 and 3 are coinciding  
Thus, equation 1,2 as well as 3 are coinciding. 
 
This can also be proved by plotting it in a 3D coordinate system (I have used GeoGebra here. In this diagram the 
two lines appear one(coincident) 

 
Fig 3: Lines 𝐿𝐿1 and 𝐿𝐿2(for this case) plotted in GeoGebra 3D 
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Now whether the debris and satellite collide or not depends on relative velocities of the debris and satellite. So let us 
consider three further subcases: 

o Subcases a.): magvd=magvs (line 48-line 50) 
This basically means that the magnitude of relative velocity (since direction of velocity is same for coincident paths) 
between debris and satellite is 0. Thus, we can say that we do not need to fire the thrusters of the satellite. 

o Subcase b.) : magvd> magvs (line 51-line 53) 
In this case it completely depends on whether the debris is behind or ahead of the satellite. Thus, in this case the pro-
gram will print that if the debris faster than satellite and is behind it we can fire in any perpendicular direction to 
avoid the debris since it is approaching the satellite and if the debris is ahead of the satellite, we don’t need to do 
anything (all ok) since debris is moving away. 
 
For example, let us consider the following inputs: 
 

 
 
Fig 4: Screenshot of an input into the program 
 
In these inputs, 𝑚𝑚𝑣𝑣𝑐𝑐 =  (4,4,4) 𝑎𝑎𝑙𝑙𝑐𝑐 𝑚𝑚𝑝𝑝𝑐𝑐 = (4,4,4);  𝑣𝑣𝑎𝑎 =  (4,4,4) 𝑎𝑎𝑙𝑙𝑐𝑐 𝑝𝑝𝑎𝑎 = (4,4,4) 
𝑝𝑝𝑐𝑐 =  𝑚𝑚𝑝𝑝𝑐𝑐 +  𝑝𝑝𝑎𝑎 =  (4,4,4)  +  (4,4,4) = (8,8,8) 
𝑣𝑣𝑐𝑐 =  𝑚𝑚𝑣𝑣𝑐𝑐 +  𝑣𝑣𝑎𝑎 =  (8,8,8) 
 
Thus, 
𝐿𝐿1(𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑚𝑚𝑣𝑣��⃗ ): (4,4,4) + 𝜆𝜆1 ⋅ (4,4,4) 
𝐿𝐿2(𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑚𝑚𝑣𝑣���⃗ ): (8,8,8) +  𝜆𝜆2 ⋅ (8,8,8) 
Thus, on splitting and solving 𝐿𝐿1 and 𝐿𝐿2 for x,y and z directions , we get 
4𝜆𝜆1 − 8𝜆𝜆2 = 4 
𝜆𝜆1 − 2𝜆𝜆2 = 1  (for x,y as well as z) 
Thus, on using the conditions listed assumed before in the cases, combined we can say that lines along which satel-
lite and debris move are coinciding. 
 
This can again be proved using GeoGebra. 
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Fig 5: Lines 𝐿𝐿1 and 𝐿𝐿2(in this case) plotted in GeoGebra 3D 

 
Thus, we can see that the lines 𝐿𝐿1 (represented in black) and 𝐿𝐿2 (represented in blue are coinciding). 
 

o Subcase c.): magvd<magvs (line 54-line 56) 
In this case it also depends on whether the debris is behind or ahead of the satellite. Thus, in this case the program 
will print that if the debris is ahead of us we can fire in any perpendicular direction to avoid it since the satellite is 
approaching it and if the debris is behind the satellite we don’t need to do anything (all ok) since the satellite is mov-
ing away. 
 

 Subcase (ii): 𝒄𝒄𝟏𝟏  ≠ 𝒄𝒄𝟑𝟑 (else) [line 57-line 59] 
In this case, since 𝒄𝒄𝟏𝟏  ≠ 𝒄𝒄𝟑𝟑 , this means that equation 1 and equation 2 are coinciding since (𝒄𝒄𝟏𝟏  = 𝒄𝒄𝟐𝟐 ) but equations 
1 and 3 are not coinciding but parallel. So equation 2 and equation 3 are also not coinciding but parallel. This means 
combined that the lines along which debris and satellite are traveling intersect are parallel to each other so no firing 
needed. 
 

 Subcase B:  𝒄𝒄𝟏𝟏  ≠ 𝒄𝒄𝟐𝟐 (else) [line 60-line 62] 
In this case, if 𝒄𝒄𝟏𝟏  ≠ 𝒄𝒄𝟐𝟐 , it means equation 1 and equation 2 do not coincide but are parallel. We do not know any-
thing about 𝑐𝑐1  and  𝑐𝑐3 but it really doesn't matter since irrespective of that, the combined path of debris and satellite 
is parallel. 

 
 Subcase 2: if det solve1 ≠ 0 (else)[line 63-line 77] 

In this case the lines of equation 1 and equation 2 are parallel or coincident but the lines of equation 1 and equation 3 
are intersecting and neither parallel nor coincident. So combined, we can say that the path of debris and satellite in-
tersect in z.  
Thus, in this case we will solve for the two parametric variables (previously I named them 𝜆𝜆1and  𝜆𝜆2 but now I am 
naming them t1 and u1) using equation 1 and equation 3 using matrices.  
We will solve the equation: 

𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑠𝑠1 ⋅ �𝑙𝑙1𝑢𝑢1� = 𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑠𝑠2 
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solve is function in linalg method in scipy library which helps in solving the above equation. After solving for t1 and 
u1, there are two possible subcases, 

 
 Subcase A: if t1>0 and u1>0(line 67-line 77): 

The parametric variables measure time in this case and time must always be positive. Negative time does not exist. 
Let us consider two subcases 
 

 Subcase (i): if t1=u1 or |𝑬𝑬𝟏𝟏 − 𝒓𝒓𝟏𝟏|<=1(line 68-line 71) 
When t1=u1 or if |𝑙𝑙1 − 𝑢𝑢1|<=1(I have kept this condition since it is possible that we might have some error in line-
arizing and so to keep a safety factor in mind, given a max one second time gap.), the two objects can be considered 
intersecting at a point and so the satellite should fire in resdir1 or resdir2 (given before) 
 

 Subcase (ii): if |𝑬𝑬𝟏𝟏 − 𝒓𝒓𝟏𝟏| >= 𝟏𝟏(else) [line 72-line 74] 
The satellite and debris will reach the intersection point at different times so all ok no need to fire. 
 

 Subcase B: If either t1 or u1 is negative or both are negative(else)[line 75-line 77] 
If either t1 or u1 is negative or both are negative, then debris and satellite will not intersect (time cannot be nega-
tive). 
 
Case 2: if det A≠0(else)[line 78-line 111] 
If det A is not zero then it means that equation 1 and equation 2 are intersecting (In this case I am assuming paramet-
ric variables as t and u) 
So we solve for t and u by using matrices by solving the equation (using linalg.solve() function) 

𝐴𝐴 ⋅ �𝑙𝑙𝑢𝑢� = 𝐵𝐵 
      
We then get the values of t and u and check if it is positive or not (explained before). Thus, there are two subcases. 
 

 Subcase 1: t>0 and u>0(line 83-line 109) 
Now there are two subcases depending on whether t and u satisfy equation 3 or not 
 

 Subcase A: (vsz*t) -(vdz*u) =pdz-psz(line 86-line 94) 
If this is true then the two paths of the satellite and debris do intersect at a point but now at what time they intersect 
matters. So further there are two subcases: 

 Subcase (i): t=u or |𝑬𝑬 − 𝒓𝒓|<=1(line 88-line 91) 
In this case, the satellite and debris intersect at a point at the same or roughly the same time. So to avoid this from 
happening we fire in resdir1 or resdir2 
 

 Subcase (ii): |𝑬𝑬 − 𝒓𝒓|>=1(else)[line 92-line 94] 
In this case, the satellite and debris cross a point but not at the same time and thus, we do not need to change direc-
tion i.e., fire thrusters. 
 

 Subcase B: if equation 3 not satisfying(else)[line 95-line 109] 
In that case the paths of the satellites and debris will intersect in the 2D(x-y coordinate) system but they will not 
meet in the z coordinates (in 3D coordinate system)since equation 3 is not satisfying. These paths will then be con-
sidered as skew lines i.e., the lines that are not parallel but are not intersecting as well. In this case we can find the 
shortest distance between two skew lines.  
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Let us assume two skew lines [4] 
𝒓𝒓𝟏𝟏����⃗ = 𝒓𝒓𝟏𝟏����⃗ +  𝝀𝝀 ⋅ 𝒃𝒃𝟏𝟏����⃗   
𝒓𝒓𝟐𝟐����⃗ = 𝒓𝒓𝟐𝟐����⃗ +  𝝀𝝀 ⋅ 𝒃𝒃𝟐𝟐����⃗   
 
The shortest distance between these two skew lines(d) is given by 

    
                                Fig 6: The shortest distance equation 
 
So, in our cases for lines  
𝐿𝐿1 = 𝑝𝑝𝑎𝑎 + 𝑙𝑙 ⋅ 𝑣𝑣𝑎𝑎 
𝐿𝐿2 = 𝑝𝑝𝑐𝑐 + 𝑙𝑙 ⋅ 𝑣𝑣𝑐𝑐 
 
For satellite and debris respectively. 
Let vector 𝑎𝑎 =  𝑣𝑣𝑎𝑎 × 𝑣𝑣𝑐𝑐 (line 97) 

Note: np.cross() is used to find cross products. 
 
Let 𝒓𝒓𝒓𝒓𝒐𝒐𝒐𝒐 =  𝒑𝒑𝒓𝒓 − 𝒑𝒑𝒓𝒓(𝒍𝒍𝒓𝒓𝒆𝒆𝒆𝒆 𝟗𝟗𝟗𝟗) 
Let 𝒌𝒌𝒓𝒓𝒎𝒎 =  |𝒓𝒓|  

Note: np.linalg.norm() is used to find magnitude of vector s 
 
Let 𝒆𝒆(𝒓𝒓𝒆𝒆𝒓𝒓𝑬𝑬 𝒗𝒗𝒆𝒆𝒄𝒄𝑬𝑬𝒐𝒐𝒓𝒓 𝒐𝒐𝒐𝒐 𝒓𝒓)  =  𝒓𝒓/𝒌𝒌𝒓𝒓𝒎𝒎. (𝒍𝒍𝒓𝒓𝒆𝒆𝒆𝒆 𝟏𝟏𝟔𝟔𝟔𝟔) 
Therefore 𝒓𝒓𝒓𝒓(𝒓𝒓𝑬𝑬𝒐𝒐𝒓𝒓𝑬𝑬𝒆𝒆𝒓𝒓𝑬𝑬 𝒓𝒓𝒓𝒓𝒓𝒓𝑬𝑬𝒓𝒓𝒆𝒆𝒄𝒄𝒆𝒆)  =  |𝒓𝒓𝒓𝒓𝒐𝒐𝒐𝒐. 𝒓𝒓|  
 

Note: abs() is an absolute function and np.dot() is used to find dot products[line 101] 
 
Let us consider an example (note this might not be a real case) 
𝐿𝐿1: (4,2,7) + 𝜆𝜆1 ⋅ (−1,1,−1) 
 
𝐿𝐿2: (1,1,1) + 𝜆𝜆2 ⋅ (1,1,2) 
 
If we take three different equations of the line and equate each of them in x , y and z we get 
𝜆𝜆1 + 𝜆𝜆2 = 3(𝑓𝑓𝑎𝑎𝑚𝑚 𝑎𝑎) 
𝜆𝜆2 − 𝜆𝜆1 = 1(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝) 
𝜆𝜆1 + 2𝜆𝜆2 = 6(𝑓𝑓𝑎𝑎𝑚𝑚 𝑝𝑝) 
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From equation a and b we get 𝜆𝜆1=1 and  𝜆𝜆2=2 but these values don’t satisfy equation c. In GeoGebra, it looks like : 
 

 
Fig 7: Lines 𝐿𝐿1 and  𝐿𝐿2(for this case) plotted in GeoGebra 3D(Bottom view ignoring z - axis) 
 
 

 
Fig 8: Lines  𝐿𝐿1 and  𝐿𝐿2(for this case) plotted in GeoGebra 3D (in this view, all the axis are seen) 
 
If we think carefully, the point where the two skew lines are closest is the point where they seem to intersect in the 
2D x-y coordinate system. Thus, the point when they are closest depends on values of t and u.Thus, there are again 
two subcases. 

 
 Subcase (i): sd<=(3*satsize) [line 103-line 107] 

If the closest distance between the path of the debris and satellite is less than 3*satsize (safety factor assumed by 
me) then we can consider the two lines to be intersecting. But it also depends on the time (t and u). Thus, there are 
further two subcases: 
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o Subcase a.): if t=u or |𝑬𝑬 − 𝒓𝒓|<=1[line 104 and line 105] 
In this case we can say that the satellite and debris are approaching the shortest distance (which is less than 3*satsize 
which I consider too close) at the same time or roughly the same time(collision course) then the satellite must fire in 
resdir1 or resdir2 to avoid debris. 
For example, 

 
 
Fig 9: Screenshot of an input into the program 
 

o Subcase (b): if |𝑬𝑬 − 𝒓𝒓|>1(else) [line 106 and line 107] 
In this case though the paths of satellite and debris are very close but the two approach the closest point at different 
times (|𝑬𝑬 − 𝒓𝒓|>1 what I consider different). So, no need for the satellite to fire the thrusters. 
subcase 2 

 Subcase (ii): if sd>(3*satsize) [else] { line 108 and line 109}  
There is significant distance between the satellite and debris (I consider it significant) so no need to worry. 
 

 Subcase 2: If either t or u or both less than 0(else)[line 110 and line 111] 
If either t or u or both are negative then the debris and satellite will not intersect. 
 
Note: If we want to find out how much to fire to get away from the debris, we must keep reiterating the pro-
gram continuously. After the first iteration, it will show that the two paths have become skew lines since the 
satellite is moving away perpendicular to the debris path. When the shortest distance between the skew lines 
becomes more than 4 times satellite size(satsize) [according to the assumption] we stop firing. 
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Conclusion 
 
In this paper, I talked about the problem of space debris and how its active avoidance is necessary. I proposed and 
explained in detail a program which can be used for active avoidance of a single debris by a satellite. I know that the 
program is just a starting stage to something big. In the future, it may be possible to build upon this program and 
expand it to multi debris systems as well or maybe more cases might also be included. This program can have other 
applications as well. It can be used to avoid collisions between two satellites, collision of meteorites/asteroids with 
satellites in interplanetary space and many other applications as well. 
 

References 
 
1.) Hlas, M., & Straub, J. (2016, March). An autonomous satellite debris avoidance system. In 2016 IEEE 

Aerospace Conference (pp. 1-5). IEEE. 
 

2.) Allain, R. (2021, October 4). Where do two lines intersect in 3 dimensions? Medium. Retrieved March 16, 
2023, from https://rjallain.medium.com/where-do-two-lines-intersect-in-3-dimensions-d28f738de36a  
 

3.) Garcia, M. (2015, April 14). Space debris and human spacecraft. NASA. Retrieved March 16, 2023, from 
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html  

4.) Find the shortest distance between the skew lines R = (6i - toppr. (n.d.). Retrieved March 16, 2023, from 
https://www.toppr.com/ask/question/find-the-shortest-distance-between-the-skew-lines-r6i2j2kti2j2k-and-
f4iks3i2j2k-where-st-are-scalars/) 

5.) Gregerson, E. (2023, February 16). Space debris. Encyclopedia Britannica. Retrieved March 16, 2023, from 
https://www.britannica.com/technology/space-debris 
 

6.) Kolyuka, Y. F., Ivanov, N. M., Afanasieva, T. I., & Gridchina, T. A. (2009, September). Examination of the 
lifetime, evolution and re-entry features for the “Molniya” type orbits. In Proceedings of the 21st International 
Symposium on Space Flight Dynamics—21st ISSFD, Toulouse, France (Vol. 650, pp. 30-110).  

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 19




