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ABSTRACT 
 
As environmental destruction progresses at an alarming rate, the threat of ecological catastrophes and the potential 
damages that communities around the world face demand that solutions be implemented immediately. Environmental 
engineers are at the forefront of grappling with the rippling effects of climate change, and to keep up with these 
challenges, a novel method of solving environmental crises must come to play: artificial intelligence. Artificial intel-
ligence (AI) models can make educated predictions, identify significant patterns, and analyze large amounts of data, 
to help optimize and improve current environmental engineering processes for the future. This paper surveys different 
applications of AI that have been used by environmental engineers to enhance current technologies and practices in 
disciplines ranging from the petroleum industry to carbon capture.  Additionally, we consider the ethical implications 
and unintended consequences that can result from an increased use of AI. Discussing the utilization of artificial intel-
ligence in environmental engineering can ultimately help develop more effective methods for combating current en-
vironmental challenges, and further examination on the ethical implications of this usage can help ensure environ-
mental justice for all. 
 
Introduction  
 
Artificial intelligence (AI) is growing in popularity and increasingly being used across several different disciplines. 
From using ChatGPT for homework answers to complex facial recognition software, artificial intelligence is taking 
the world by storm. Still, many grapple with the complexities of artificial intelligence and what the term actually 
means. The Oxford English Dictionary defines artificial intelligence as “the capacity of computers or other machines 
to exhibit or simulate intelligent behavior” (Oxford English Dictionary, n.d.). More specifically, artificial intelligence 
is a leading technology that uses and trains empirical data to improve the efficiency of current processes and enable 
progress for future (Manyika, 2022). AI can be considered a broader term than encompasses fields such as machine 
learning, neural networks, data mining, etc., (Salih et al., 2020). In the context of environmental engineering, artificial 
intelligence is used as a tool to process data and analyze the behavior and patterns of different physical systems, so 
data from the past can be accurately interpreted for future applications (Krzywanski, 2022). Even for those that un-
derstand what it means, how it works is not understood to the same degree. Using artificial intelligence can be divided 
into three steps: identification, prediction, and execution; identification includes algorithms gathering past data col-
lections, prediction entails an analysis of the data with the purpose of identifying patterns and constraints, and execu-
tion includes presenting and applying the data interpretations found (Salih et al., 2020). AI is used as an alternative to 
current methodologies and regulation systems. Applying AI to current methods can lead to an optimized performance 
with the goal of achieving a better product than one which was made through human interaction.  

The usage of artificial intelligence is becoming increasingly popular in environmental engineering creating 
both benefits as well as unintended consequences. AI enhances engineering systems by accomplishing goals with 
higher accuracy, less computing time, and greater cost-efficiency than current practices. AI also has the potential, if 
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broadly implemented, to fight some of the emerging climate disasters globally. However, with increased usage, arti-
ficial intelligence could have consequences, that potentially outweigh any advantages of using the technology. Loop-
holes, faulty data, data manipulation, etc., are all potential issues that could arise. As such, the ethics of implementing 
artificial intelligence is widely contested, as models have the potential for exacerbating existing systemic bias. Thus, 
analysis of the use of artificial intelligence in environmental engineering is needed to discuss whether the benefits 
outweigh the ethical concerns that come with increased use and development of these technologies. 
 
General Uses 
 
Artificial intelligence’s potential is developing in the field of environmental engineering. In many different fields of 
study, AI’s capabilities are being harnessed to fight environmental degradation around the world. Either by solving 
current inconsistencies and gaps of knowledge or supplementing already successful processes, the benefits of artificial 
intelligence are the gateway to the future for solving climate catastrophes. While there are several environmental 
engineering applications, we will highlight just a few recent ways that AI is being employed.  
 
Hydraulic Fracturing  
 
Hydraulic fracturing, one of the fastest-growing industries of today, is one of the many beneficiaries of artificial in-
telligence advancements. Hydraulic fracturing, or fracking, is a widely used technique in which oil and gas is collected 
through drilling and pumping fluids and high pressures into reservoirs (Jackson et al., 2014). However, even as frack-
ing is growing in popularity for being environmentally friendly compared to other processes, such as coal mining, 
there are still many obstacles that come with the current practice. One such problem is non-uniform production from 
different production sites in horizontal wells. This problem arises from different stages of fracking producing different 
rates and amounts of gas, making big operations inefficient and prone to uncertainty (Huang et al., 2020).  Due to 
different clusters underperforming, pumping schedules were optimized through the implementation of modeling al-
gorithms and machine learning from different fracking simulators (Morozov et al., 2020). Other similar issues arise, 
such as problems with activating different natural fracture networks (Keshavarzi & Jahanbakhshi, 2013). Using arti-
ficial intelligence can help current fracking process reach its target design. Several machine learning algorithms have 
been developed to examine different fracturing zones through parameters such as size, number, location, angles of 
perforations, rock strength, permeability, etc., which help generate different predictive models that help characterize 
different reservoirs and make fracking production more efficient (Morozov et al., 2020). Empirical examples of suc-
cess when using machine learning include model prediction of the Bakken formation oil production, neural networks 
used to predict water production in wells drilled in Denton, Texas, and shale gas simulation models for resource yields 
(Awoleke & Lane, 2011). This has further implications on the success of the fracking industry as a whole. In addition 
to increasing the accuracy and efficiency of fracking operations, machine learning has aided in digitizing and struc-
turing oil companies. By optimizing fracking productivity, artificial intelligence is paving the way for the industry has 
become more economically viable and environmentally friendly. 
 
Carbon Capture 
 
Artificial Intelligence is also at the forefront of updating current carbon capture technology. Carbon capture is the 
process of storing harmful greenhouse gases, such as carbon dioxide, in underground geological formations so these 
gases can never reach the atmosphere. Machine learning models are being used to simulate storage centers and the 
long-term effects of storing carbon at different locations(Wen et al., 2022). Current obstacles in finding potential 
capture locations are making sure there is not a pressure buildup from redirecting large amounts of carbon dioxide 
into the ground. These pressure buildups can lead to fracturing in underground formations, causing leakage of carbon 
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into the atmosphere and surrounding groundwater resources (Lemieux, 2011). A recent advancement in artificial in-
telligence can assist in solving this issue. U-FNO, a neural operator, can simulate pressure levels to find the best 
injection rates, creating a faster and more accurate carbon capture process. The model is used to select correct injection 
sites, control pressure buildup, maximize storage efficiency, and predict the spread of carbon dioxide up to 30 years 
after the initial injection (Wen et al., 2022). Location simulations help ensure that the risk of carbon leakage is miti-
gated and also allows scientists to pick locations that are the most successful long-term. Carbon capture is essential to 
creating negative emissions, so ensuring that the process is accurate, fast, and cost-efficient means one step to a better 
chance of mitigating climate change as a whole. 

 
Flood Forecasting 
 
Weather forecasting and natural hazard risk management can also benefit from utilizing artificial intelligence algo-
rithms. Natural disasters have the ability to impact anyone from anywhere. According to the World Health Organiza-
tion, natural disasters impact over 150 million people each year (World Health Organization, n.d.). Among other 
hazards, floods stand out as the  most frequent and devastating disaster, causing irreparable environmental, social, and 
economic damage. Additionally, floods are particularly prone to increases in frequency and intensity due to climate 
change, so the potential for damage is only increasing. Currently, systems do not provide sufficient information for 
accurate forecasting which can lead to dangerous evacuation situations. For instance, current hydrology models can 
estimate river flows through meteorological forecasts, but still are not fully effective for other water applications and 
for floods with short-lead times (Sene, 2010). However, utilizing artificial intelligence to forecast floods through an-
alyzing huge data sets can create accurate predictions to prevent the worst impacts. This can be achieved by using data  
gathered from past rainfall and flood simulations, which can then be processed through machine learning systems to 
provide predictive analysis on patterns that are present in these past datasets (Nile, 2018). This process reveals key 
insights such as the time, location, and severity of different flood paths, as well as emergency planning and recovery 
responses (Wagenaar et al., 2020). Two such models are being used now: the hydrological model that can make water 
level predictions in different bodies of water, and the invasion model which can predict what area will be most likely 
affected by future floods (Sirisena et al., 2020). By using real and high-quality data sets, AI can create accurate fore-
casting in just milliseconds, including predicting floods that present uncommon behavior. 

 
 Predicting Tornado Formations 

 
In addition to successful flood forecasts, artificial intelligence is also being utilized for  tornado predictions. Tornadoes 
are an emergent threat, as their strength, quantity, and damage can be highly destructive to human population centers 
and the surrounding environment (Zeng et al., 2022). Climate change only exacerbates the possible damage done by 
tornadoes, and challenges remain in preventing further destruction. Current algorithms suffer from inaccuracies that 
lead to high false-alarm rates and underperforming detection and classification abilities (Zeng et al., 2022). Machine 
learning is optimizing pre-existing algorithms so accurate and rapid forecasting of tornado formations can be ensured 
(Basalyga et al., 2021). Forecasting algorithms can produce better tornado warning decisions by predicting a storm’s 
longevity, wind, hail, and tornado conditions; AI models are also more beneficial than regular human-developed mod-
els because they can interpret large swaths of data and can assess the variability of a storm’s tornado potential (Stein-
kruger et al., n.d.). Furthermore, models should be varied towards each user’s preference, so every model can be 
contextualized to which location it is being used for. Specified parameters allow for a more optimized forecasting 
system that is necessary to fight against these escalating destructive natural disasters. 
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Monitoring Biodiversity 
 
The severe and widespread implications of biodiversity loss and the newest technologies are needed to combat inten-
sifying challenges. Biodiversity loss is closely coupled with climate change, and biodiversity is key to combating 
numerous threats including deforestation, carbon emissions, water pollution, and other environmental crises (Torres, 
2016). Recently, the University of Fribourg developed an artificial intelligence model to identify regions in need of 
biodiversity protection and conservation, a crucial first step of utilizing emerging technologies to improving the sus-
tainability of several ecosystems. This model, named CAPTAIN (conservation area prioritization through artificial 
intelligence), allows for the integration of several parameters such as biodiversity data, conservation budgets, climate 
vulnerabilities, and human uses of the land to make educated decisions about future efforts of conservation at certain 
locations (Silvestro et al., 2022). Protecting regions with higher ecological diversity is more valuable than protecting 
a higher number of regions, which is why AI is such a beneficial tool to use (Li, 2020). Regions with higher diversity 
of animals and plants or regions that house key species are more useful to protect than focusing on just a higher number 
of regions that might not be as important to the earth’s ecosystem. Choosing which regions to conserve can include 
quantifying trade-offs between the costs and benefits of biodiversity protection, i.e., are the costs of conservation 
worth the resources gained from combatting biodiversity loss in that specific area. CAPTAIN helped improved pre-
vented species loss by 26% compared to current protection policy, which is an impressive start to other technologies 
being developed for this purpose (Silvestro et al., 2022). Policymakers should make use of advancing technology like 
artificial intelligence in order to mitigate ecosystem loss. 
 
Limitations 
 
There are still multiple limitations to implementing artificial intelligence in environmental engineering. There are 
many broad vulnerabilities to using AI that risk the accuracy and effectiveness of systems that use the technology. 
Implementing AI into pre-existing systems requires the machine learning’s algorithms to be accurate and updated, and 
it also requires distributing the technology in an efficient and equitable way. These broad parameters often limit the 
effectiveness and success of using artificial intelligence. 
 
Modeling Restrictions 
 
Artificial intelligence is at the forefront of averting climate disasters due to its capacity to use past data to generate 
accurate predictions about the future. However, despite the potential for good, there are a few limitations to its capa-
bilities. Firstly, the efficacy of AI depends on when and how training models were built. There are multiple questions 
that need to be answered on whether a model is appropriate to use in certain contexts, including the following:  What 
community’s data was the model based off of and can it be applied broadly? When was the model created? Have there 
been any trends that have changed since the initial creation of the model? How can the model stay updated and unbi-
ased? These questions and concerns have significant implications for  the utility of  artificial intelligence and will 
effectively limit its efficiency. For environmental engineering in particular, access to the most updated knowledge and 
discoveries related to the environment is necessary to create the most functional and successful solutions.  

As the ecosystem and geographical areas evolve because of climate change, there are many limitations to 
using AI modeling (Galaz et al., 2021). Machine learning models rely on the past data collection to make predictions 
about the future, but as important factors that models are based upon continuously evolve, there may not be a stable 
stasis point for models to use that can ensure full accuracy. Ecological conditions can shift, reverse, and result in 
surprising conditions that are unpredictable. For instance, using AI to optimize fracking can only be efficient if oil and 
gas extraction sites remain consistent over time, which is difficult to claim as true. As mentioned above, a potential 
use of AI in the fracking industry is to create models that characterize reservoirs to make fracking production more 
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resourceful; however, as reservoir and geological landscapes change, models that might have worked in the past, are 
no longer accurate now. Another notable example of this limitation is AI’s role in carbon capture. Past models were 
successful because they could select the best sites to store carbon and could predict any future consequences that arose 
if that site was used. Still, these predictions are only valuable if the data they rely on is still relevant, which, as previ-
ously stated is not always the case. To avoid this obstacle, either new models need to be periodically updated  or old 
models need to be continuously updated. Both of these potential solutions take additional resources, time, and man-
power to maintain which decreases the initial benefits of using artificial intelligence in the first place. This also leads 
to an economic disparity between AI users, as smaller companies or users that do not have consistent funding can not 
necessarily harness the same benefits in an accessible way. 
 
Resources/Distribution 
 
If AI were to become common and widely applied to many industries and locations, doubts arise about if (1) there are 
the necessary resources to implement AI widely and (2) if the eventual implementation is equitable. “Equal access to 
AI-technologies does not guarantee equal or fair outcomes (Galaz et al., 2021).” AI’s potential impact on existing 
socioeconomic conditions, implicates a new digital divide. The existing digital divide describes the inequity between 
groups that can access developing technology and those who cannot (Riggins & Dewan, 2005). Artificial intelligence 
has the potential to only exacerbate and grow the digital divide, as more advanced and/or wealthy groups can capitalize 
on this easy access, while those that do not have access to the technology only get more disadvantaged (Carter et al., 
2020). This could impact society on the local, business, and country level. Local businesses who do not have the 
technical knowledge or resources to implement AI to aid them leaves them a step behind big businesses who can 
access and update their technology. In the context of using artificial intelligence to aid in making more efficient envi-
ronmental regulations, a possible reality could be only wealthier groups accessing the benefits of the technology. If 
businesses or people with better resources can gather data more efficiently than poorer communities, AI models are 
only being trained with data exclusive to those with superior access to resources.  
 
Summary Table 
 

Field How AI is being utilized Environmental Benefits Limitations 

Hydraulic  
Fracturing 

Used to optimize pumping 
schedules and analyze var-
ious fracking sites to deter-
mine the most productive 
areas. 

Fracking offers environmental 
benefits compared to alterna-
tive natural gas production 
methods. 

Shifting reservoir conditions 
means models must remain 
updated. 

Carbon Capture 

Used to simulate storage 
centers to predict the suc-
cess and long-term effects 
of using that area. 

Capture is essential to storing 
carbon, an environmentally 
destructive gas, and prevents 
air and water pollution. 

Continuous data on potential 
storage sites is needed to make 
accurate predictions. 

Floods 
Used to forecast the sever-
ity and location of future 
floods. 

Floods heavily impact the en-
vironment and over 150 mil-
lion people per year and are 
only intensified by climate 
change. 

Floods patterns and character-
istics are constantly changing, 
preventing the usefulness of 
past data. Difficult to imple-
ment forecasting models in ar-
eas that have limited re-
sources. 
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Field How AI is being utilized Environmental Benefits Limitations 

Tornados 
Used to make accurate and 
rapid forecasts on future 
tornado formations. 

Tornadoes are extremely de-
structive to human population 
centers and hurt surrounding 
environment like wildlife, for-
ests, habitat, etc. 

It takes a lot of resources to 
personalize models for areas 
with varying tornado patterns. 

Biodiversity 

Used to identify regions in 
need of biodiversity pro-
tection so ecological diver-
sity and to prevent species 
loss. 

Ensuring biodiversity is key to 
combating deforestation, car-
bon emissions, water pollu-
tion, and improving the sus-
tainability of several ecosys-
tems. 

Limited resources can be used 
for conservation efforts, and 
data needs to be constantly an-
alyzed to keep models up-
dated. 

 
Ethics 
 
The use of using AI in environmental engineering presents many ethical concerns. Algorithms can inherit “coded bias,” 
propagate  social justice concerns, and make harmful and inaccurate predictions due to misapplied or manipulated 
data. Strong and accurate environmental regulations are key to check against companies or operations that violate 
rules pertaining to climate protection efforts. Current enforcers, such as the Environmental Protection Agency (EPA) 
are battling internal obstacles such as limited resources, limited regulatory effectiveness, and lack of agency cohesion 
(Demortain, 2020). To solve this problem, machine learning is being used to supplement and enhance current regula-
tory practices. Still, several downsides can arise from using AI in environmental regulating.  

The data being used in AI algorithms could be vulnerable to a phenomenon known as “coded bias,” which 
results when models are trained using racist datasets, making algorithms inherently discriminatory. This phenomenon 
was observed when AI was implemented in other industries. When used in the criminal justice system, machine learn-
ing models have been known to incorporate racial bias into judicial, profiling, and sentencing algorithms to harmfully 
discriminate against certain races (McGovern et al., 2022). If AI models in environmental engineering were to be 
trained off of biased data, many serious and negative outcomes could occur. For instance, algorithms could direct 
oversight away from facilities located in minority or low-income communities based off of misrepresented data, which 
results in AI systemically worsening existing discrimination (Hino et al., 2018). 

Even unbiased models still have the potential to exacerbate current environmental injustice and unfair envi-
ronmental practices. Currently, there have been several instances of social justice concerns with environmental regu-
lations. Minority and low-income populations were disproportionally affected by the lead water crises in Flint, Mich-
igan, and the EPA purposefully dismissed the locations in which poor communities and people of color were located 
(Mohai, 2018). Artificial intelligence may only perpetuate these acts of environmental injustice. Weather radar sys-
tems serve as example of potential injustice. Weather radar systems rely on reflecting energy into the atmosphere to 
gather information about storms; many majority Black communities in the Southeast have limited radar coverage due 
to their distance from radar sites , making it difficult  for machine learning models to gather information about storms 
that could impact those areas (McGovern et al., 2022). This results in less data being collected about storm patterns 
in those areas, causing some communities to be less prepared for natural hazards compared to others. By not ensuring 
equal access to benefits from machine learning, AI reproduces unequal opportunities and treatment between different 
communities. 

Lastly, there are many concerns associated with the quality and accuracy of data that is being fed to artificial 
intelligence algorithms. Successful implementations depend on the quality and accuracy of the data being used. This 
data is sometimes self-reported or and can be subject to misuse or manipulation by those who are using it, leading to 
harmful and inaccurate data models (Hino et al., 2018). As an example, relying solely on  self- reported data for 
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detecting hailstorms would likely result in the data being skewed towards population dense regions like  major cities 
and urban areas. This could cause AI to over-predict storms in urban areas and under-predict storms in rural areas, 
creating inaccurate predictions.  (McGovern et al., 2022). Furthermore, if the data being trained is not fully repre-
sentative of its target community, the models will not be successful nor accurate (McGovern et al., 2022). Developers 
of AI tools must directly engage with the various populations of areas that they are going to implement the technology 
in; otherwise, they risk overlooking relevant community knowledge. This can be remedied by seeking to consult with  
local providers that are more aligned and knowledge about each community itself. Another example that demonstrates 
the potential inaccuracies that could result from AI is if a diverse geographic area were to be analyzed. Machine 
learning models will ignore small portions of the data set and instead look for patterns on the more common areas, 
causing errors for small sites that were deemed inconsequential. Thus, data can easily be misapplied for the wrong 
uses and the quality of the data being used can heavily impact the success of a model. Artificial intelligence is not 
magic, and engineers should seek to understand the unintended consequences of increasing the implementation of 
artificial intelligence in environmental science. Even though industries may benefit and become profitable through 
use of artificial intelligence, it should not come at the expense of the safety and well-being of others. As the potential 
for inequity and discrimination increases against vulnerable communities, these ethical consequences demand that we 
address the question of who really stands to benefit from implementation of artificial intelligence. 
 

Discussion 
 
Environmental engineering is becoming increasingly significant to our everyday lives, and as the field develops new 
technologies, the potential benefits and drawbacks of applying artificial intelligence, as well as the ethical implications 
associated with the process, are still being discussed. To access the benefits of optimizing practices that might be the 
key to solving deadly environmental disasters, one must still analyze the relevant and known risks associated with 
new applications of AI. These risks extend beyond the users of AI and includes externalities. Even the physical infra-
structure simply needed for AI implementation can be environmentally destructive itself,  requiring rare earth mining 
and substantial material and energy consumption,  which could “further imperil the delicate ecological balance of our 
era” (Crawford & Joler, 2018).  

Additionally, if inequality and systemic bias against communities that are already facing injustice becomes 
more pronounced, using artificial intelligence could be considered a net-negative solution. Whether it’s through pur-
poseful discrimination or exclusion by way of ignorance as previously mentioned , the AI’s application to engineering 
might become the next form of continued structural violence against vulnerable communities. Conversely, it’s worth 
considering if structural violence is inevitable due to other factors, and whether AI can instead serve as a solution to 
offset the disproportionally dangerous effects of climate change that disadvantaged communities face. These consid-
erations should guide how future decisions are being made by companies, industries, and policymakers. Focusing on 
an impact that could affect a greater number of people, means a trade-off with prioritizing structural violence that 
vulnerable communities have repeatedly endured. Further research should consider detailing, projecting, or catalogu-
ing the effectiveness and results of wide-spread application of the technology, as AI risks becoming the next pathway 
of ignorance and neglect by big industries and governments. Other research agendas could involve developing tools 
to address emerging issues such as racially coded bias, how to make AI more environmentally sustainable, increasing 
development on how models could become more adaptable or updatable, and creating ways to make data more appli-
cable and accessible to all areas. Having technology that can institute checks and balances on other AI applications 
would be crucial for safe and ethical implementation. Additionally, AI can be applied to other parts of environmental 
engineering, such as  monitoring water and air quality, analyzing better locations for landfills, or detecting/preserving 
endangered wildlife. Comprehensive research and consideration of the applications of artificial intelligence in envi-
ronmental engineering will aid in creating more efficient solutions to solve environmental catastrophes, while also 
minimizing the likelihood of furthering structural violence and environmental injustice. 
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