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ABSTRACT 
 
Autonomous vehicle navigation is becoming an important problem as fully self-driving cars are becoming a possibility 
in the next few decades and space exploration is gaining more momentum. One of the most important aspects of 
autonomous vehicle navigation is a solid path planning algorithm. Most path planning algorithms can be categorized 
into 2 groups, classical and machine learning algorithms. Classical algorithms can find the shortest path and usually 
have a 100% accuracy, but it can't function when its environment isn’t 100% mapped out. On the other hand, ML 
algorithms can operate on partial maps or no maps at all, but they have poor success rate and produce long paths. 
However, a hybrid approach to a path planning algorithm could eliminate the downside of both categories of algo-
rithms. A robot with a hybrid algorithm could have 100% accuracy while maintaining a near optimum route without 
a map of the environment. This paper proposes a search space reduction hybrid network (SRHN) path planning algo-
rithm that not only combines the advantages of classical methods and machine learning methods, but also reduces the 
search space and memory usage. SRHN works by dividing up the distance between a start point and an endpoint with 
landmarks and paths from its current landmark to the next. While calculating an approximate optimal path, it signifi-
cantly reduces search space. To test the result of SRHN, experimentation was conducted in the real world. Excellent 
results have been achieved in the real world 2D tests that were conducted. 
  

Introduction 
 
With ample focus on space exploration and NASA starting the first step of returning to the moon through the Artemis 
mission, scouting robots that are capable of planning routes and moving quickly through unknown environments is 
becoming more critical[1]. Aside from extraterrestrial exploration, these robots also play a crucial role in many activ-
ities on Earth like search-and-rescue, warehouse management, restaurant server robot, and exploring terrains that are 
too dangerous for humans. 
  Many popular classical methods of path planning, like A*[2] or Wavefront[2], though generates optimal 
paths and has 100% accuracy, can only operate under conditions where the environment is known. Because of this, 
classical algorithms are nearly obsolete in scouting robots in unmapped locations where the goal is to plan accurate 
and optimum paths and record the surroundings along the way. In recent years, the advancement of Machine Learning 
(ML) gave rise to ML-based path planning algorithms[3], [4] that can path plan under unmapped environments. How-
ever, many ML-based algorithms have difficulty competing with the success rate of classical algorithms, and ML-
based algorithm paths are often considerably longer than those of classical methods. By constructing a pros and cons 
list for classical and ML-based path planning algorithms, we see that the downside of classical algorithms is the upside 
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of ML-based algorithms and vice versa. This suggests that a hybrid approach to a path planning algorithm can theo-
retically allow a rover to navigate through an unmapped environment while maintaining a near optimum path with 
100% accuracy. In this research, a search-space reducing hybrid network (SRHN) is proposed for path planning prob-
lems that combines the merits of classic and machine learning approaches. SRHN is a prominent hybrid algorithm 
that combines a machine-learned algorithm with a traditional algorithm like A*. SRHN has demonstrated significant 
search space savings and can operate with partial maps while still generating near-optimal routes. The goal of this 
research is to construct an autonomous scouting robot to test SRHN in real-world scenarios. 

 

 
Figure 1. Comparison between SRHN (left) and A* (right) gray area represents the cells searched and green cells 
represent the final path. For SRHN, the blue cells are the landmarks selected by SRHN. As seen, SRHN has a signif-
icantly reduced search space. 
 

Methods 
 
Network Architecture 
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SRHN consists of a global kernel, to set landmarks towards the end point, and a classical kernel, that plans the path 
between two landmarks. In our example of the local kernel, we used A*. The global kernel is made up of four modules. 
The view module, map module, ensemble module, and landmark module. 
 

 
 

Figure 2. Overview of the search-space reducing hybrid networks (SRHN) architecture. The robot is colored in red 
and the goal point in blue. Each of the green dots represents a landmark determined by SRHN to guide it around a 
newly introduced obstacle. The yellow line represents the path found by the local kernel; in our case it represents the 
path found by A*. 
 
View Module 
The view module uses a LSTM network[7] to take in information of the rovers surrounding and suggest the next action 
it should take based on its environment. The view module bases its suggested next action on four inputs about its 
surroundings: 1. The normalized distance between the rover and surrounding obstacles in all 8 directions, 2. The 
normalized direction to the goal, 3. The angle to the direction of the goal, 4. The normalized distance to the goal. The 
view module exhibits greedy behavior as it performs well when there are direct routes to the goal point but has a low 
success rate when U-turns are present. 
 
Map Module 
The map module’s main objective is to fix the greedy behavior of the view modules by trying to predict what the map 
will look like. This works better in scenarios where there are long corridors or complex formations of barriers are 
present. The map module works by augmenting the LSTM network input with the compressed global image snapshot. 
The global snapshot is compressed by using a Convolutional Auto-encoder (CAE)[25]. The CAE encoder contains 
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five layers, four convolutional layers and one linear layer. Each of the convolutional layers contains a series of 4 
layers, and the linear contains two layers. 
 

● Convolutional layers: The encoder contains four convolutional layers. Convolutional layers are used to learn 
spatial hierarchies and extract features from the input data. They perform a convolution operation on the 
input data, which helps the model learn local patterns. 

● Batch normalization layer: After each convolutional layer, there is a batch normalization layer. Batch nor-
malization is used to normalize the input data and improve the training process by reducing internal covariate 
shift. It helps the model converge faster and achieve better performance. 

● Max-pooling layer: Following the batch normalization layer, there is a max-pooling layer used to downsam-
ple the input data, reducing its spatial dimensions. This helps the model learn more abstract features and 
reduces the computational complexity. 

● Leaky ReLU activation function: After the max-pooling layer, a Leaky ReLU activation function is applied. 
Leaky ReLU is a variation of the ReLU activation function that allows a small, non-zero gradient when the 
input is negative. This helps prevent the "dying ReLU" problem, where some neurons become inactive and 
stop learning. 

● Linear layer: The final layer of the encoder is a linear layer, which is a fully connected layer that maps the 
output of the previous layers to a lower-dimensional space. This is the encoded representation of the input 
data. 

● Batch normalization layer: After the linear layer, there is another batch normalization layer to normalize the 
output of the linear layer. 

 
This architecture allows the encoder to progressively extract and compress the input information into a lower-

dimensional representation. This compressed representation can be later used by the decoder to reconstruct the original 
input data. 
 

To decode, we use a CAE decoder that consists of a linear layer followed by four deconvolutional layers. 
Each deconvolutional layer, which essentially performs the reverse operation of a convolutional layer, is accompanied 
by a batch normalization layer and a ReLU activation function, except for the last deconvolutional layer, which uses 
a Tanh activation function. This is because the input data is normalized in the range of [-1, 1], and the output of the 
Tanh function matches this range. Tanh is a smooth, differentiable function that maps the input to the range of [-1, 1], 
making it suitable for this purpose. This design allows the decoder to learn complex spatial hierarchies and generate 
high-quality output. The CAE is trained on 100,000 synthetically generated maps of different environments.  
 
Ensemble Module 
The view and map modules behave differently depending on the layout of the map. Additionally, when training the 
model on different datasets, the same variability in behavior exists. To address this issue, we added a third module 
called ensemble module. Ensemble machine learning methods use multiple weak learners and outputs a majority vot-
ing consensus[9]. The ensemble module focused on parallel ensemble methods that train all weak learners simultane-
ously on different training datasets sampled from the original dataset. This approach results in uncorrelated weak 
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learners, each learning different features. The voting procedure then increases the accuracy of predictions by incorpo-
rating multiple uncorrelated weak learners. 
 

The ensemble module uses the view and map modules as weak learners. By training these models on different 
datasets, the weak learners learn to adapt to various environments and remain uncorrelated. During runtime, the weak 
learners are executed in parallel on the map. If one or more kernels find the goal, we select the one with the shortest 
traversed length. If none of the kernels find the goal, we choose the kernel that has made the most progress. By 
implementing the ensemble module, we significantly improve the success rate of finding the goal compared to using 
the view and map modules alone.  
 
Landmark Module 
The previous three modules are capable of generating paths from starting point to goal point, but these modules have 
poor success rate compared to A*, especially in bigger maps or in cases where complex obstacles are present. To 
improve the success rate, a new module called the landmark module was designed. 

The landmark module's primary function is to suggest a series of landmarks between the start and end points 
to guide the rover through the environment. While any of the previous three modules can be employed to generate 
landmarks, the ensemble module has proven to be the most effective. Landmarks are generated by constraining the 
number of iterations of the global kernel, the algorithms used for landmark generation, such as the ensemble module. 

Once the landmarks are identified, a local kernel is tasked with planning the actual path for maneuvering 
between these landmarks. Although any classic solution can serve as the local planner, we used A* because in most 
cases, it searches less space compared to other classical algorithms. The landmark module plays a crucial role in 
enhancing the success rates of SRHN. 
 
Rover Design 
 
For our research, we are only concerned with the performance of SRHN in a 2D environment. For this reason, the best 
design choice for a robot was a rover.  

The rover uses a lidar and a camera to get its location and surrounding inputs for the view module. The 
camera can turn 360 degrees, enabled by a servo, which the camera is attached to. The rover moves with 4 mechanum 
wheels to allow for omnidirectional movements, which are powered by 4 12V motors. To control everything, we used 
a Nvidia Jetson Nano, a small but powerful computer for deep learning, to run SRHN. The frame of the rover was 3D 
printed in carbon fiber nylon, which was then coated with red spray paint for better contrast between the hardware and 
frame. To power everything, the rover uses a 11.1 V 6000mAh lipo battery that provides the rover with roughly one 
hour of run time each charge. The Jetson nano runs on Ubuntu 18.04, a Linux distribution. The robot and SRHN are 
programmed in C++ and Python by using the ROS framework.  
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Figure 5. A picture of the rover used to test SRHN. The battery is located under the frame and hidden. The total cost 
of the rover was under $500USD, making it very economically feasible to reproduce.  
 
Environment Set Up 
 
Every environment was set up to have approximately an area of 150 square meters. This is usually the size of 2 
classrooms plus a corridor linking the rooms together. Environments of unusual nature and layout were especially 
desirable. Once a location is determined, the area is blocked off with plastic dividers and wooden blocks. Random 
obstacles are then scattered around the environments and special obstacles are arranged to create U-turns and other 
special natured obstacles. When the environment is set up, a start point and goal point are then randomly chosen, 
preferably near the edges of the environments to make sure there is a good distance between the start and goal points.  
 

Results 
 
We tested 10 different algorithms under 30 different maps, twice each map. In total, 600 real world tests were con-
ducted. Of the 10 algorithms, 7 were machine learned algorithms. Each machine learning algorithm was trained with 
the same dataset of 60,000 256x256 sized maps split between random-fill, block, and house style maps generated in 
PathBench[10]. Six of the algorithms tested were meant to serve as a benchmark to compare SRHN to, while three 
algorithms were the first three modules of SRHN to see if the modules of SRHN are crucial to its success. From each 
test, we took 4 measurements:  
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1. Success rate (Succ R), defined as if the rover was able to reach the goal point from the start point. All maps 
designed are guaranteed to have at least one navigable path between the start and goal points. Measured as a 
percentage point. 

2. Distance of path (dist. path), defined as the distance traveled from the start point to the goal point in meters. 
3. Time taken to reach goal (time), defined as the time it takes for the rover to travel from the start point to the 

goal point in seconds after the algorithm is initiated. 
4. Search space (search), defined as the percentage of the map searched. This measurement was the hardest to 

take as the environment needed to be mapped before each map was tested on. This required the robot to 
operate in a closed environment, achieved by placing plastic dividers around a chosen perimeter. The envi-
ronment was manually mapped by using Gmapping[11]. The final measurement is achieved by dividing the 
space the algorithm searched by the size of the entire map. Only A*, wavefront, and SRHN had this data. 

 
Figure 3. Here is a comparison between SRHN (on the left) and A* (on the right) on a test run in a living room. We 
can see that SRHN’s path is really close to that of A*, but the search space is a lot less. The blue dots on SRHN’s map 
are the landmarks set by SRHN. 
 

Out of the 30 environments tested in, 25 locations were at school and 5 were from a house. Each map was 
built to be roughly the same size of 150 square meters (the size of roughly 2 high school classrooms). For each map, 
random obstacles were scattered around random locations. After obstacles were set and the environment was blocked 
off, a start and goal point were chosen randomly while trying to maximize the distance between the start and goal 
points. 
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Table 1. Averaged results of the 4 measurements taken for each of the 10 algorithms tested in real world 2D condi-
tions. In total, the results of 600 tests were computed. 
 

Algorithm Succ R (%) Dist. Path (m) Time (s) Search (%) 

A*2 100 15.32 36.91 21.3 

Wave-front2 100 15.82 37.99 41.29 

OMPL RRT2 100 33.58 98.58 NA 

SRHN1 100 17.11 53.32 10.73 

View Mod3 77 24.89 82.56 NA 

Map Mod3 80 21.04 70.27 NA 

Ensemble Mod3 90 20.75 66.61 NA 

Potential Field3 77 25.26 88.77 NA 

VIN[5]3 52 30.88 114.49 NA 

MPNet[6]3 83 25.46 87.34 NA 

1SRHN data is bolded. It is the only hybrid algorithm. 
2Classical algorithms. 
3Machine Learning algorithms. 
 

Each of the data points presented in table 1 are taken as an average. Each algorithm was run under the same 
condition and same map twice to increase consistency and remove outliers. For classical algorithms, the rover was 
given full information about the map, while for machine learning algorithms, no information about the map was given 
other than its goal point. Data presented in a table form can be hard to visualize, but graphs might help us to better 
understand how SRHN compares to both classical and machine learning algorithms. 
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Figure 4. These graphs help to better visualize SRHN’s advantage compared to many classical and machine learning 
algorithms. The graphs compared the success rates, distance of paths, time, search space, and the speed of the 10 
algorithms tested.  
 

A speed bar graph was added by dividing the distance the rover took to reach goal point by the time it took 
to reach the goal point. This graph is crucial in helping us understand the algorithm's behavior during each run. 

 

Discussion 
 
Looking at the results, we begin to see the importance of all four modules in SRHN. On their own, none of the modules 
can reach a 100% success rate. As predicted the view module’s greedy behavior caused it to have longer paths as 
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during a few tests, we observed the view module would walk into a U-turn or other dead ends that seems to be closer 
to the goal point. As a result, the time taken for the rover to reach the goal point was also longer for the view module. 
However, the map module was able to avoid these problems as the massive data set it was trained on had many 
examples of U-turns, so the map module was able to avoid walking into these “traps.” These “traps” can sometimes 
cause the view module to become disorientated or mess up its localization, causing the rover to mess up the location 
of its goal point. This explains why the success rate of the view module is lower than that of the map module. When 
we combine the view module and map module together by using parallel ensemble machine learning, we see that there 
is a noticeable increase in success rate and decrease in time. What this tells us is that the ensemble module walks into 
U-turns and dead ends less. This can also be seen by looking at the speed data for the ensemble module. Compared to 
the view and map modules, the ensemble module seems to have a higher speed. However, this isn’t necessarily true. 
The speed data is derived from taking the average distance and dividing by the average time. What this means is that 
a higher velocity means less distance it traveled compared to the time it took, which means there were less backtrack-
ing out of dead ends or U-turns. When the landmark module and a local kernel is added to make SRHN, we see that 
the success rate skyrocketed to 100% while seeing a huge decline in distance and time. These tests show the im-
portance of each module in SRHN and the necessary role they play in the success of SRHN.  

Out of the algorithms tested, the only algorithms that achieved a 100% accuracy were the A*, Wavefront, 
and OMPL RRT (which are all classical algorithms). However, these algorithms were run while having full knowledge 
of the map, so having a 100% success rate isn’t surprising. SRHN, on the other hand, was run without any knowledge 
of what the map looks like, yet it still had a 100% success rate. As predicted, none of the machine learning algorithms 
were close to having a 100% success rate. Not only was SRHN more accurate than the machine learning algorithms 
tested, but the paths it produced are drastically shorter and the time it takes to reach its goal is also substantially faster. 
This demonstrates that we have accomplished the first goal of this research: creating a hybrid path planning algorithm 
that can have a 100% success rate without having prior knowledge of the map. 

By examining the distance graph, we see that SRHN’s distance of path was close to that of A* (the shortest 
possible path). Not only was SRHN able to find a path to a goal point with 100% accuracy while having no knowledge 
of its environment, but it did so while producing nearly the best path possible. Though the distance of the path was 
close to that of A*, the time it took to reach the goal was much longer compared to A*. The explanation of this is 
simple: SRHN uses a machine-learned global kernel, which takes more computing than a classical algorithm. On top 
of that, SRHN must take and store information about the environment in real time. As a result, SRHN moves slower 
to give itself more time for computation. This is also reflected in the speed data where we see that a rover with SRHN 
moves slower than a rover running A*. SRHN can become faster by using better hardware (ex. a more powerful GPU). 

SRHN shows a more than 50% decrease in search space compared to A* and a more than 75% decrease in 
search space compared to Wavefront. This occurs because A* exhibits greedy and heuristic behavior. So, by using 
machine learning to break up the distance between start and goal points, the greedy and heuristic behavior of A*, there 
will be less trial and error because each segment of the path will become simpler, and in turn lowering the search 
space.  
 

Conclusion 
 
The combining of classical and machine learning algorithms into a hybrid algorithm is proven to be possible and 
exhibits many benefits. SRHN not only had 100% accuracy, but also had more than 50% less search space and a near 
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perfect path compared to A*, all while performing with no knowledge of the environment. SRHN also has a significant 
advantage over machine learning algorithms in terms of success rate, distance of path, and time taken to reach a goal. 
SRHN is truly able to take advantage of the benefits of both classical and learning-based algorithms. With that, SRHN 
was able to achieve everything that it was hypothesised to be able to do. 

In the future, as more data is collected from test runs, we can begin to train SRHN on real world data aside 
from just simulated data. There are many real-world events that computational simulations are not able to replicate. 
Hence by training with real world data, we can expect SRHN’s distance to goal to become closer to the optimum path 
and further reduce the search space.  

SRHN has only been experimentally proven to work in a 2-dimensional plane. A future goal would be to 
extend SRHN into 3D, but this would come with significantly more challenges as it would be hard for sensors to sense 
in a 3D plane. The rover would also need to be redesigned to accommodate 3D environments. Some possible robot 
design for that case could be either a hexapod or a drone, but each comes with their own design challenges.  
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