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ABSTRACT 
 
Autonomous vehicles have evolved to make decisions with great confidence and accuracy. Systems like the Waymo 
self-driving clearly can control a vehicle with level 4 autonomy under good conditions where lane markings and other 
driving guides like road signs are clearly visible [2]. Elon Musk has announced that Tesla autopilot should reach level 
4 in 2023 [3]. However, many such systems fail to perform at a similar level in non-perfect weather conditions. The 
most difficult such weather appears to be a snowy climate as the vehicle significantly underperforms and the autono-
mous functionality is often not applicable [1]. This paper aims to train a model capable of navigating snowy weather 
by collecting data pertaining specifically to this weather, including unorthodox visual cues to stand in place of road 
markings. Such cues include tire tread marks and surrounding snow piles. These serve as a viable substitute for lane 
markings, allowing the vehicle to operate safely while mimicking human driving tendencies. Such a model can effec-
tively drive in both clear and snowy weather when tested in simulation software. We consider a model effective for the 
purposes of this study in the snow when it can execute a full turn before failure. 
 

I. INTRODUCTION 
 
Autonomous vehicles (AVs) are growing in their capabilities every year. Tesla’s Autopilot is under development and 
shows promise. Similarly, Waymo has already been running in Phoenix for some time and is working to get its AVs on 
the road in San Francisco as well [10]. Waymo’s self-driving boasts a level 4 autonomy under good conditions where 
lane markings and other driving guides like road signs are clearly visible [2]. Despite major breakthroughs in autono-
mous driving, autonomous vehicles today significantly underperform in adverse weather conditions [1]. This paper 
aims to combat the lack of performance in one specific type of weather: a snowy climate. 

As long as there is valid concern about AVs’ ability to perform in adverse weather conditions, it remains 
difficult to deploy autonomous vehicles to many populated areas. This concern stems primarily from AVs’ numerous 
failures to perform in adverse weather, which rightly makes policymakers reluctant to allow AVs to run on the streets 
[8]. Snowy weather in particular greatly impairs sensors and reduces vehicle control, making it both difficult and 
careless to deploy AVs in snowy areas without first designing systems capable of combating these limitations [8]. Not 
only do these limitations prevent the adoption of AVs in snowy areas where they are likely to fail, lack of performance 
in non-perfect conditions shakes confidence in AVs overall, thus greatly reducing their adoption and usage even in 
optimal conditions. 

Prior work have attempted to alleviate safety concerns regarding adverse weather conditions; all have either 
chosen not to target snowy weather specifically or decided not to demonstrate their solution through a working model. 
Prior work have developed effective semi-autonomous solutions to driving in the snow, sensor-fusion for adverse 
weather conditions, and lane-based autonomous systems; however, the task of a fully autonomous solution for snowy 
driving remains unfulfilled. This is the main shortcoming we aim to address. 

To combat the difficulties of driving in the snow (see Sec. II), we attempt to collect data pertaining to specif-
ically snowy weather, in addition to data with clear skies and roads. Our goal is to train a model that performs well in 
both clear and snowy weather. The metric we will be using for measuring the success of a model is the amount of time 
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during which the vehicle travels with only safe actions. This paper specifically aims to train a model to understand a 
city environment both when there is snow falling and clear skies. Furthermore, training data will include some streets 
that are covered in snow and others that are clear. By using data from both clear and snowy conditions results in a 
model trained for high performance in both snowy and clear weather. 

 
II. CHALLENGES OF SNOWY DRIVING 

 
Driving in the snow has always been challenging for vehicles and drivers. Drivers suffer from reduced visibility as 
collected snow often blocks key visual cues such as lane markings, road signs, crosswalk markings, intersection turn 
guides, and the end of the road. Falling snow can obstruct vision and make it harder for drivers to see their surroundings 
and make the correct judgments. The road is also usually more slippery when it’s covered by snow, making it harder 
to control the vehicle even if one’s sensory perception remains unimpaired. There always exists the danger of sliding 
or skidding on the road as well as losing control entirely. Furthermore, on roads that lack regular maintenance, there 
is a possibility of vehicles getting stuck in the snow. 

There exist more problems for autonomously driving in snowy weather. Key sensors like LiDAR are at least 
partially obstructed if not rendered completely useless in major cases and are less reliable even in mild snow [6]. Falling 
snow particles can interfere with the light that is emitted and reflected back into the LiDAR sensor. As such, the 
autonomous vehicle can no longer completely rely on its primary sensor, hindering driving capabilities in the snow [1]. 
In general, most sensors that function by emitting and receiving something (light, sound, etc.) will suffer from reduced 
performance in the snow due to obstruction from the falling snow. 

Further difficulties are illustrated through the first, naive, model that was used. This model used the baseline 
architecture (see: Sec. IV-A) but with a larger input shape for raw camera data instead of camera data processed by a 
CNN (Convolutional Neural Network). The model correctly turned away from the wall when it closed in on it but was 
incapable of determining the correct direction of travel. In fact, driving straight at an angle rather than parallel to the 
road was the behavior most of the time. Essentially, the model failed to note differences in the directions of travel 
because of the landscape seeming to appear rather uniform in the mountainous snow environment that this model was 
tested in. This highlights the uniformity of snow as another problem since machine learning models use distinct fea-
tures to draw patterns from data. 

 
III. PRIOR WORK 

 
Huval et al. [7] used a CNN and sliding window for lane and obstacle detection. They highlight each lane marker in 
the road to plan a trajectory for the AV. Such a method is effective in clear weather; however, under snowy weather 
conditions, the lane markings are often not visible, making this method inapplicable. Should the algorithm not be able 
to see the lane markings, the AV will lose its autonomous function on the road. The CNN/sliding window technique 
would need to be repurposed to other data relevant to snowy driving. If this is done, it can allow AV to do similar 
classification of its surroundings. 

Fridman et al. [5] attempted to use an arguing machines concept to decide when human intervention was 
necessary. The system works by comparing the Tesla autopilot with an end-to-end neural network. When the two 
machines “disagree,” the system cannot be confident in either network’s decision and must have the human take over. 
While this has the potential to alleviate some safety concerns of AVs in adverse weather conditions by notifying the 
human supervisor when it is necessary to take control, it does nothing to actually drive autonomously in the non-
optimal snowy conditions. This is an effective semi-autonomous system that increases the possibility of deploying AVs 
in the snow; our aim is to create a fully autonomous system. If there is snow covering the road, the arguing machines 
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will notify the driver that they must take control of the vehicle, but the vehicle itself cannot operate autonomously. 
Therefore, more work is needed to develop a full-autonomy solution. 

Specifically in adverse weather conditions, Yeong et al. [11] discuss the degradation in sensor performance 
and offer an analysis of sensor fusion techniques to combat said decrease in performance. For example, they discuss 
the possibility of overlaying radar or LiDAR over camera feed. A fusion of these two sensors can help combat the 
obstruction of radar/LiDAR and the lack of clarity in the camera feed. However, this study does not go as far as creating 
a system capable of autonomous driving in adverse weather conditions. 

 
IV. SYSTEM DESIGN 

 
Given the challenges of driving in the snow, training our model required the use of unorthodox data. In the absence of 
lane markings and dividers, the task of identifying where the AV should be positioned required training on data that is 
not normally required for regular city driving. One of the unique challenges of snow is that it collects on the road, and 
in sufficiently cold climates, it does not melt. Although this is a large problem for driving, it also presents an oppor-
tunity as, to maintain drivable conditions, the snow is often pushed to the side of the road. Identifying the position of 
the collected snow allows us to train the model on this data, as there is a direct relationship between the sides of the 
road and where humans drive. In smaller areas, this technique can be highly effective in determining the correct vehicle 
placement. However, in well-maintained areas, especially big cities, often the road is not fully covered in snow and the 
side of the road does not have large snowbanks. 

There are still elements of the snow we can use to our advantage. The sidewalk will likely be highly white 
with collected snow, pointing us to the edge of the road. Furthermore, with less snow present, the task becomes more 
akin to how currently existing algorithms discern the side of the road. The snow masks features that existing algorithms 
may use, but there will likely still be buildings beyond the sidewalk that can also serve as a method of judging the AV’s 
position. 

One network is dedicated to simply finding these collected snowbanks or the edge of the road. Eventually, it 
becomes more effective for this model to simply determine a state vector with 4 values that represent the lane placement 
and distance from intersection. The data is then fed into more machine learning algorithms to predict throttle, steering, 
and brake values. These three values are the required control inputs for the vehicle inside simulation software. 
 
A. Baseline Model Architecture 
 
The baseline model was simply a Sequential Neural Network. The network takes in state input to select the optimal 
control inputs for the vehicle. In the initial test, this state input was image data in the form of an array, distance sensor 
data, LiDAR data, and current speed so the input layer had 113594 neurons. This is significantly reduced in the second 
iteration where another model passes in processed image data so the input layer was 3006 neurons. The remaining part 
of the network was common to both iterations: 2 dense layers of 128 neurons and an output dense layer with 3 neurons 
(one for each control input to the car). 
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B. CNN Architecture 
 

 
Fig. 1. Image processing CNN, road edge detection (version 1) 
 
The CNN architecture varied as development continued; however, initially the most promising model seemed to start 
with a 2D convolutional layer with an input shape of 144 x 256 x 3 (the dimensions of the image) and 32 3x3 kernels. 
Following this was a 2D max-pooling layer of pool size 2x2. The following layers in order are a flattening layer and a 
dense layer of 128 neurons. The final output layer was initially of size 12 to predict the coordinates of the edge of the 
road. 
 

 
Fig. 2. Image processing CNN, robot state prediction (version 2) 
 
However, it was more effective to have an output dense layer of 4 neurons representing information about the vehicle’s 
placement on the road and the distance from intersection. The first value represents whether the vehicle is centered in 
the road, and the other three are a one-hot encoding of the values far-from-intersection, arrived-at-intersection, and in-
intersection. Even more effective was the usage of transfer learning in the CNN. The most effective model started with 
VGG16 with an input shape of 144 x 256 x 3 (image dimensions). This was followed by a 1024 neuron dense layer 
and ended in the same 4 neuron configuration as the other model. 
 
C. Reinforcement Learning Architecture 
  

 
Fig. 3. Reinforcement learning model, image data to action prediction (version 1) 
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The first iteration of the reinforcement learning model was an actor-critic network in which both the actor and 
critic took in a 144 x 256 x 3 image as input. This is followed by a 128-neuron dense layer common to both networks. 
Finally, the actor network ends with a 2-neuron dense layer that corresponds with the choice to steer sent to the vehicle 
and the critic network ends with a 1-neuron dense layer that corresponds with the perceived reward. 
 

 
Fig. 4. Reinforcement learning model, state prediction to action prediction (version 2) 
 

The final model used was also an actor-critic reinforcement learning model. This time, both the actor and 
critic networks start with a 4-neuron input layer that takes in state data from CNN. The remainder of the networks is 
identical to the first model. 
 
D. Training Process 
 
The first method’s training process starts with recording data in the AirSim. AirSim gathers state data about the car, 
such as speed, as well as recording image and LiDAR data right from Unreal Engine where the environment is built 
and simulated. The first iteration of the CNN predicted the location of the ends of the road. Image data can be labelled 
with the boundary points of the sidewalk which is then used to train the CNN (see Sec. IV-B) to recognize the edges 
of the road. This data needs to be passed into the base model (see Sec. IV-A), so once the CNN is trained, it is used to 
prepare the rest of the data before training this second model. This data is used to train three models; one is for turning 
left, the second for going straight, and the third for turning right. These three models are trained on the 6 input coordi-
nates for the borders (spanning over 12 neurons), 1000 LiDAR points (spanning over 3000 neurons), and the current 
speed of the car. There are three separate data sets of this structure, one for each model. 

However, there was a more effective method than predicting the borders of the road. Instead, it turned out to 
be easier to simply predict the ”state” the vehicle was in at the time. This state is a vector with 4 values representing 
lane placement and distance from intersection. We labelled the data with the first value in the vector being either 1 or 
0 for centered in the lane and not centered in the lane respectively. The next three values in the vector represent the 
possible states: far from intersection, arrived at intersection, and in intersection. When collecting data to be used in 
this way, it was important to ensure that there was no bias towards any particular state. This entailed having a very 
similar number of data points for the three different distances from intersection even though in real driving the far-
from-intersection state is easily the most common. Eventually, the baseline model and actor-critic model were designed 
to take this new state in as input rather than the border points (see Sec. IV-A, Sec. IV-C). 

Training the actor-critic model was different. The Python training script links to the Unreal Engine environ-
ment and uses the AirSim Python API to control the vehicle in real time. The model outputs probabilities for each 
action in a set of 5 actions. These actions are sent to the AirSim as control inputs for the vehicle. The model uses the 
performance from each episode (attempt to complete a task) to decide how to adjust the weights. As such, all processing 
of the state data and predictions on what actions to take were all made in real time, similar to how the model would 
eventually be applied after its completion. 

All training was completed by collecting data as described and uploading it to Google Drive. From there it 
can be accessed by Google Colab, where it is processed and saved back to Google Drive. Since this data can now be 
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accessed by Colab, it can be loaded into a notebook and used to train the models (see Sec. IV-A, Sec. IV-B, Sec. IV-
C). 
 

V. EVALUATION 
 
A. Methodology 
 
Our method for testing and training the algorithm relies on the use of simulation software. The chosen simulation 
software was Microsoft’s AirSim. This software allows for easy weather changes and has a good physics engine that 
can be used right out of the box. Said weather changes allow for diversity in data as some data can be collected with it 
actively snowing, and other data can be collected with clear skies. The level of snowfall is highly customizable, allowing 
the user to select a percentage. AirSim’s environment is built in Unreal Engine, so it allows users to configure their 
own environments; as such we use Blender and Unreal Engine to set up our custom snowy environments. 

AirSim contains all necessary sensors, and our model was trained on camera feed, LiDAR, distance sensor, 
and current speed of the vehicle. Said camera data was annotated with the snowbanks or edge of road mentioned in 
Sec. IV. Afterwards, the camera data was annotated with the state data used to train the new models (see Sec. IV-D). 
LiDAR offered a full 360 view capped to 1000 data points. All these forms of data were collected via AirSim’s Python 
API during human driving in the Unreal Engine environments. All models were built with Google’s Keras library and 
trained in Google Colab except for the actor-critic network since it needed to be trained locally with the simulator. 

We use the built in TPU that comes with the Google Colab Pro subscription to train our CNN and baseline 
models. The actor-critic network was trained locally on a laptop with an Intel i7 10th gen CPU and Intel Iris Plus 
graphics. 
 
B. Model Performance 

 
Table 1. The performance of each model as a length of time without departing from the road 
 

Model Travel Time Without Error 
Baseline 5 seconds 

Baseline+CNN 11 seconds 
Actor-Critic+CNN 27 seconds 

 
1. Baseline Model: The baseline model performed terribly despite having the easiest environment. It was trained 

to simply stay between the snow bumps and travel parallel to the road. It did not end up learning this effec-
tively; it drove at an angle, rarely parallel to the street. It did try to self-correct just before hitting the wall, but 
it never effectively avoided the collision. This model’s poor performance was likely due to using only dense 
layers, which are not very effective at capturing elements of image data. 

 
2. Baseline+CNN: After adding CNN processing above the baseline model, it seemed to perform somewhat 

better. However, it still often failed to perform well in real situations, seeming almost ”confused.” This is 
likely explained by the fact that the models were all trained through supervised learning. This implies that 
there is only one ”correct” way to handle a given set of inputs and offering a full range of inputs becomes 
difficult without offering more guidance on specific elements to be filtered out. Since, in real driving, there is 
a large amount of variation in outside conditions (input to the model), it seems ineffective to train it for one 
driving style on certain inputs rather than letting it learn more “organically.” 
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3. Actor-Critic+CNN: Reinforcement learning of an actor-critic network is exactly the form of training that al-
lows for a more “organic” training. This model performed the best of the group. It was clear that the model 
was drawing patterns between the state and the desired action. The model was provided with “good” regions 
and “bad” regions to travel in. The model was trained to prioritize being in a “good” region; these regions 
draw out the path of an action at an intersection. For example, when training the model to turn left, the “good” 
regions together draw out a left turn. By learning to stay within these bounds to maximize reward, the model 
effectively learned the sequence to make a left turn. Given imperfections in the CNN state prediction, it stands 
to reason with better state input, the actor-critic network would work even better. 

 
C. Interpretation of Results 
 
In addition to the actual time data, it is quite obvious that the model reacts to certain stimuli when driving. For example, 
the reinforcement learning model clearly shifts left in the lane before increasing the rate of turn to make the left turn 
inside the intersection. This reflects an understanding of the environment despite the snowy obstructions, signaling the 
correct time to execute the turn. During this leftward shift, the path is very straight. Only after the vehicle reaches the 
intersection does it start to turn rapidly. The turn does seem choppy with the vehicle switching between having a very 
large angular velocity at times and appearing to be driving straight at other times, but generally executes successfully, 
thus meeting our initial goal for a successful model. However, its overall quality of control is poor enough that the 
model fails soon after by crashing. 

Simply following the road while understanding its surroundings seemed to be a tough task for both the Base-
line+CNN model and the Actor-Critic+CNN model at times; however, the Baseline only model had even more trouble, 
failing at even this basic task very quickly. In fact, regardless of the situation, the Baseline-only model failed very 
quickly compared to the other models—adding a CNN doubled the performance and switching to reinforcement learn-
ing more than quintupled it. 

In executing each task, the models also had varying consistency to go along with a change in performance. 
The Baseline-only model was very sensitive to slight changes in input, having wildly different behavior. Removing 
direct dependency on inputs by adding a CNN that provides a state that the Baseline model can use helped to limit its 
erratic nature. However, since both these models still use supervised learning, they are still sensitive to variations in 
training data that can manifest in the final control of the vehicle. This could be remedied by simply including more 
diverse data points, but a representative sample of camera feeds in particular would be nearly impossible. Hence, the 
use of reinforcement learning allowed for far more consistency than either of the other models: the larger flexibility in 
acceptable output allows the model to operate in a similar manner despite potential differences in input from episode 
to episode. 
 

VI. DRIVING WITH HUMAN INTERVENTION 
 
In the period of time before AVs are fully able to navigate all forms of snowy weather, it would be beneficial to be able 
to deploy autonomous systems in areas with non-ideal weather conditions to track their successes and failures. Fur-
thermore, autonomous systems have been proven to be safer than humans overall [9]. Allowing AVs to continue to run 
in adverse conditions like snowy weather would still be useful in keeping people safe. However, their limitations in 
these adverse conditions prevent them from driving alone. As such, a human operator would still need to be present. 
This would offer developers valuable information about the performance of their systems in adverse weather conditions 
while also helping keep people safe. 

However, there are also dangers that come with implementing such technology. Namely, people being lulled 
into complacency and not paying attention to the driving task. This has been explored for level three autonomy [4], 
and it stands to reason that something similar can occur for autonomous systems in adverse weather conditions. As 
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such, implementing this technology would likely need to be complemented by monitoring methods to detect if the 
driver is paying attention. If the monitoring system detects that the driver is not paying attention, it should deactivate 
the autonomous functionality. 

It stands to reason that with such defensive measures, deploying such systems early is the best course of 
action—developers get valuable information while preserving safe driving for the human sitting inside. 
 

VII. DISCUSSION 
 
A key takeaway from the training process (see Sec. IV-D) is that passing in image data as an array is highly ineffective. 
Convolutional layers perform far better for analyzing images, although they require a lot of data as evidenced by the 
generally poor performance of the CNNs. In fact, given that CNNs are the bottleneck in effectiveness and provide vital 
state data, having enough image training data for the CNNs is extremely important to future success. Another problem 
was that using supervised learning restricted the network to only one way of doing things which prevented the model 
from performing well. This was improved upon by the reinforcement learning model which resulted in far more success. 
Considering that the reinforcement learning model allows the network to learn more organically for a task that has 
many solutions, it is not surprising that it was more effective. 

This project could easily have been improved through better training of models, especially the CNNs. All 
models were trained in Google Colab and locally on a laptop, so more computationally intensive fine tuning of networks 
was not feasible. With stronger hardware like deep-learning servers, deeper fine tuning of the models would be possi-
ble—this is one effective way to better train the models, which was the main flaw in the system. Another potential 
improvement to the training process would be to record more data. Furthermore, in the initial data collection practices, 
some outputs were far more common than others, incentivizing the network to get better at predicting based on the 
relative size of subsets rather than by drawing out patterns in the data itself. Because of this, future data for future CNN 
training was collected with this in mind. Another thing to experiment with would be the network architectures and 
transfer learning models used to train a model more capable of recognizing features in training data. For example, the 
model with VGG16 architecture (see Sec. IV-B) seemed to be most effective, but there could easily be other architec-
tures that perform better for this problem. 

Any future work that builds upon the reinforcement learning strategy should invest in good state prediction. 
In the case of image data this will likely be a CNN. If the future work uses reinforcement learning as well, it would be 
key to have good state input (a good CNN). Another potential avenue to consider would be using a verification model. 
This model would be trained not to predict the correct action based on the state but verify that a certain action given 
the current state is a “good idea.” Training such a verification model would likely entail taking recordings of manual 
driving and labelling frames as either helpful actions or hurtful actions. Furthermore, one intrinsic weakness of the 
reinforcement learning model is in its Markov chain decision making; however, driving is not an activity that always 
only relies on the current state, but it can also depend on previous actions which are completely ignored. Future work 
could attempt to target this weakness by passing in multiple previous frames instead of just the current state as input. 
 

VIII. CONCLUSION 
 
We learn from this work that collecting data specifically pertaining to a snowy environment is an effective way to boost 
performance in this weather, but it is highly dependent on what model architecture is used and what training practices 
are observed. This work also reaffirms the idea that reinforcement learning is effective in actions like driving or playing 
video games in which there are many possible routes to a successful result. In any case, understanding the vehicle’s 
surroundings is a priority, showing the importance of good state analysis (CNNs for images, etc.). 
 
 

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 8



REFERENCES 
 
[1] A. C. M. (AccuWeather), How can self-driving cars ’see’ in the rain, snow and fog? Jan. 2021. [Online]. 

Available: https://www.abc10.com/article/weather/accuweather/self-driving-cars-radar-inclement-weather-rain-
fog-snow/507-0438604e-ef32-4c0a-9634-99a6ec71fa12 

[2] E. Ackerman, “What full autonomy means for the waymo driver,” IEEE Spectrum, vol. 4, 2021. 
[3] G. Davis, Elon musk: Tesla full autonomy promised this 2023, again, Apr. 2023. [Online]. Available: 

https://www.techtimes.com/articles/290617/20230420/elon-musk-tesla-full-autonomy-promised-2023-again-
referring-level.htm 

[4] L. Eliot, Distracted driving will grow exponentially on the path to self-driving cars, May 2019. [Online]. 
Available: https://www.forbes.com/sites/lanceeliot/2019/05/16/distracted-driving-to-growexponentially-on-the-
path-to-self-driving-cars/?sh=660472b41c1c. 

[5] L. Fridman, L. Ding, B. Jenik, and B. Reimer, Arguing machines: Human supervision of black box ai systems 
that make life-critical decisions, 2017. DOI: 10.48550/ARXIV.1710.04459. [Online]. Available: 
https://arxiv.org/abs/1710.04459. 

[6] How will self-driving cars fare in bad weather?: Endurance, Jan. 2021. [Online]. Available: https: 
//www.endurancewarranty.com/learning-center/tech/self-driving-cars-bad-weather/. 

[7] B. Huval, T. Wang, S. Tandon, et al., An empirical evaluation of deep learning on highway driving, 2015. DOI: 
10.48550/ARXIV.1504.01716. [Online]. Available: https://arxiv.org/abs/1504.01716. 

[8] W. Knight, Snow and ice pose a vexing obstacle for self driving cars, Feb. 2020. [Online]. Available: 
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/. 

[9] G. Nash, Are self-driving cars safer than human drivers? Apr. 2022. [Online]. Available: https: 
//www.way.com/blog/are-self-driving-cars-safer-than-humans/#:∼:text=In%20certain%20aspects% 
2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.. 

[10] Waymo one. [Online]. Available: https://waymo.com/waymo-one/. 
[11] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion technology in 

autonomous vehicles: A review,” Sensors, vol. 21, no. 6, 2021, ISSN: 1424-8220. DOI: 10.3390/ s21062140. 
[Online]. Available: https://www.mdpi.com/1424-8220/21/6/2140. 

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 9

https://www.abc10.com/article/weather/accuweather/self-driving-cars-radar-inclement-weather-rain-fog-snow/507-0438604e-ef32-4c0a-9634-99a6ec71fa12
https://www.abc10.com/article/weather/accuweather/self-driving-cars-radar-inclement-weather-rain-fog-snow/507-0438604e-ef32-4c0a-9634-99a6ec71fa12
https://www.techtimes.com/articles/290617/20230420/elon-musk-tesla-full-autonomy-promised-2023-again-referring-level.htm
https://www.techtimes.com/articles/290617/20230420/elon-musk-tesla-full-autonomy-promised-2023-again-referring-level.htm
https://www.forbes.com/sites/lanceeliot/2019/05/16/distracted-driving-to-grow-exponentially-on-the-path-to-self-driving-cars/?sh=660472b41c1c
https://www.forbes.com/sites/lanceeliot/2019/05/16/distracted-driving-to-grow-exponentially-on-the-path-to-self-driving-cars/?sh=660472b41c1c
https://www.forbes.com/sites/lanceeliot/2019/05/16/distracted-driving-to-grow-exponentially-on-the-path-to-self-driving-cars/?sh=660472b41c1c
https://doi.org/10.48550/ARXIV.1710.04459
https://arxiv.org/abs/1710.04459
https://www.endurancewarranty.com/learning-center/tech/self-driving-cars-bad-weather/
https://www.endurancewarranty.com/learning-center/tech/self-driving-cars-bad-weather/
https://www.endurancewarranty.com/learning-center/tech/self-driving-cars-bad-weather/
https://doi.org/10.48550/ARXIV.1504.01716
https://arxiv.org/abs/1504.01716
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://www.way.com/blog/are-self-driving-cars-safer-than-humans/#:%7E:text=In%20certain%20aspects%2C%20self%2Ddriving,under%20the%20influence%20of%20alcohol.
https://waymo.com/waymo-one/
https://doi.org/10.3390/s21062140
https://doi.org/10.3390/s21062140
https://www.mdpi.com/1424-8220/21/6/2140



