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ABSTRACT 
 
Automated recognition of facial expressions is a central component of systems used in an expanding array of domains. 
For a computer to automatically recognize affect, copious amounts of data are required to successfully train the model. 
It can often take a lot of work to collect and label data. In recent years, researchers have applied numerous data 
augmentation strategies to increase the diversity of the data within training datasets. Here, I examined the most 
common data augmentation strategies to determine which strategies result in higher performance for the facial 
expression recognition machine learning model. I first tested each data augmentation technique by itself and compared 
their performances. I next ran an ablation study with the augmentation strategies. I then analyzed the effect of dataset 
size on the marginal contribution of data augmentation. I find that augmentation does not always improve 
performance. When the dataset size is small, it results in a degradation of model performance. The accuracy of models 
with data augmentation starts to outperform the models with no data augmentation when the training dataset size is 
greater than a certain threshold. These results highlight the importance of considering dataset size when applying data 
augmentation to computer vision. 
 

Introduction 
 
Facial Expression Recognition (FER) using machine learning is widely researched and applied to many areas, such as 
human-robot interaction [16-20], digital therapeutics for behavioral healthcare conditions such as autism [21-29], 
diagnostics for behavioral healthcare [30-31], driver safety [32-38], and many other domains. To robustly train an 
automated model for facial expression recognition, I need variety within the dataset. Collecting and labeling such data 
can be time-consuming and costly. Data collection could also bring up privacy concerns, which can make it hard for 
it to reach a massive scale.  

Data augmentation is a technique that encompasses the artificial expansion of a base dataset by using data 
preprocessing techniques, thereby introducing variability into the dataset [39-40]. Data augmentation can therefore 
improve the performance of FER machine learning models. Data augmentation has been frequently applied to FER, 
usually bolstering the performance when compared to no data augmentation [1] [2] [3] [5] [10-15]. 

While data augmentation is a nearly universal step in the machine learning computer vision model training 
pipeline, a formal study of the effects of data augmentation at various dataset sizes has not been published. It is 
important to understand when data augmentation may help a model generalize versus when the augmentation may 
actually hurt (i.e., when the dataset is prohibitively small). 

To address this gap in the FER literature, I compare commonly applied data augmentation strategies for 
computer vision processing. I compare the performance of FER models when training with various training set sizes 
both with and without data augmentation. I then analyze the effect of data augmentation and training dataset size on 
the FER model accuracy, precision, and recall. I find that with small dataset sizes, data augmentation hurts the training 
of FER models, but this effect is reversed when the training set size is above roughly 1750 images. This work suggests 
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that data augmentation is most useful with medium to large datasets and can actually hurt when the dataset is small. I 
conjecture that this is because at smaller dataset sizes, data augmentation “confuses” the model due to the difference 
in data distribution between the train and test sets. 
 

Related Work 
 
Data augmentation is used in Facial Expression Recognition (FER) to introduce more variations into the datasets for 
training the machine learning models to be more effective and accurate. Several types of data augmentation strategies 
are developed or chosen by researchers to improve the performance of their Facial Expression Recognition models. 
Data augmentation is also used to avoid overfitting the models due to insufficient training datasets.  

Geometric transformations are one of the most common data augmentation strategies chosen. It includes 
rotation, reflection, flips, shifts, shears, and scale [5]. Some oversampling augmentations are also developed or used, 
such as Generative Adversarial Network (GAN) [2] [9]. Image pixel editing data augmentation strategies like random 
cropping, erasing, random erasing [3], random noise [8], skew, and occlusion are considered to enhance CNN models 
for FER [4] [5] [8]. Some chose the image attribute changing data augmentation strategies such as adjusting 
illumination [6], contrast [4] [6] [8], or adding color jittering to create additional training images. Most researchers 
chose more than 1 data augmentation strategy for creating more varieties and avoiding overfitting [1] [2] [4] [5] [6] 
[7]. Various techniques are derived from some data augmentation strategies. For example, Random Erasing can be 
done image-aware, object-aware, or image and object-aware [3]. A Point Adversarial Self Mining (PASM) approach 
was Inspired by random erasing and adversarial erasing [7]. In [8], Face Detection was combined with data 
augmentation techniques to achieve better performance for Facial Expression Recognition.  

Almost all FER models achieve better accuracy after training with augmented datasets. Most improvements 
are significant. A few of them see significant improvement on smaller datasets, but no significant improvement on 
already large datasets, e.g. CelebA [4]. Models trained with augmented datasets may also achieve higher accuracy 
with fewer epochs [5]. 
 

Methods 
 
Dataset Description 
 
I tested my method on a widely used facial expression recognition dataset, the Facial Expression Recognition 2013 
dataset (FER2013). FER2013 data are collected in the wild. Images in the dataset contain variations in pose, view 
angle, and lighting condition. There are 35,887 48x48 grayscale images with 7 emotions labeled as Angry, Disgust, 
Fear, Happy, Sad, Surprise, and Neutral. The 3 majority classes are Happy: 8,989 images, Neutral: 6,198 images, and 
Sad: 6,077 images. I only selected these three classes, Happy, Neutral, and Sad, for my experiment. The total number 
of images from these three classes is 21,264. During the experiment, 90% of the images were selected as training data, 
the remaining 10% of the images were used for model validation. So the training dataset has 19,137 images, and the 
validation dataset has 2,127 images. 
 
Table 1. Emotional label distribution in the FER2013 dataset. 

Emotion Number of images 

Happy 8,989 

Neutral 6,198 
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Sad 6,077 

Fear 5,121 

Angry 4,953 

Surprise 4,002 

Disgust 547 

 
 
Machine Learning Model Details 
 
I implemented a 2D convolutional neural network (CNN) with 6 convolutional layers, each with max pooling and 
ELU activation. I applied dropout to the final dense layers of the network for regularization. Because the point of this 
study is to compare data augmentation strategies rather than to develop the highest performing model, I implemented 
a single CNN without hyperparameter optimization. 

 
Data Augmentation Strategies 
 
The training image data is augmented by ImageDataGenerator in the Keras API. I used 8 common augmentation 
strategies provided in the ImageDataGenerator class: zoom, horizontal flip, rotation, shear, horizontal shift, vertical 
shift, vertical flip, and brightness level. These strategies are described further and examples are shown in Table 2. 
 
Table 2. Data augmentation strategies and examples of modified data points using each strategy. 
 

Data Augmentation Strategy  Sample Images 

Zoom: Generate images with varying zoom-in or zoom-out levels. 
 

Horizontal flip: Flip or mirror an image in the horizontal direction (left-right) 
 

Rotation: Rotate an image a certain degree 
 

Shear: Slant an image. Shearing is also known as skewing 
 

Width shift: Horizontal shift of the pixels of the image without changing the dimension 
of the image.  
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Height shift: Vertically shift the pixels of the image without changing the dimension of 
the image. 

 

Vertical flip: Flip or mirror an image in the vertical direction (up-down) 
 

Brightness: Generate images with varied brightness levels. 
 

 
I explored a variety of data augmentation hyperparameters per strategy using grid search. All data augmentation 
strategies and corresponding hyperparameters explored are listed in Table 3. 
 
Table 3. Data augmentation strategies and hyperparameters. 
 

Data Augmentation Parameter values 

Zoom zoom_range=0.15 
zoom_range=0.25 
zoom_range=0.35 
zoom_range=0.50 
zoom_range=0.75 

Horizontal flip True, False 

Rotation rotation_range=15 
rotation_range=30 
rotation_range=45 
rotation_range=60 
rotation_range=75 

Shear shear_range=0.15 
shear_range=0.30 
shear_range=15.0 
shear_range=30.0 
shear_range=45.0 

Horizontal shift width_shift_range=0.15 
width_shift_range=0.30 
width_shift_range-0.45 

Vertical shift height_shift_range=0.15 
height_shift_range=0.30 
height_shift_range=0.45 

Vertical flip True, False 

Volume 12 Issue 3 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 4



Brightness level brightness_range(0.3, 0.9) 

 
Experimental Procedures 
 
The first set of experiments began with training my FER model without any data augmentation and recording the 
validation result as a baseline to compare against. To identify which data augmentation strategy is most effective, I 
ran a series of experiments by using only one data augmentation strategy out of the eight common data augmentation 
strategies I included in the study (listed in Table 2) to train my FER model and compare the result with the baseline 
(“only-include-one study”). The validation accuracy of adjusting the brightness level was much lower than other data 
augmentation strategies. I therefore excluded the brightness range hyperparameter in the following experiments. 

To compare how much the performance changes when I exclude one of the data augmentation strategies, I 
trained the FER model with seven out of eight of the common data augmentation strategies applied and removed a 
single strategy (“ablation study”).  

In the third set of experiments, I used hyperparameter optimization to identify which parameter for each 
augmentation strategy yielded higher accuracy. I used one data augmentation strategy at a time, replaced the 
parameters with different values, and recorded the results. For example, multiple experiments were conducted for 
rotating images with 15, 30, 45, 60, and 75 degrees to compare the performance. 

For the final set of experiments, I trained the FER model with various training dataset sizes without any data 
augmentation, and with seven common data augmentation strategies applied. I then generated 100 sets of 1,500 
randomly selected validation samples and sent them to the trained FER models for prediction. I then compared the 
performance to analyze the effect of data augmentation for different training dataset sizes. The experimental 
procedures are illustrated in Figure 1. 

 
Figure 1. Illustration of the experimental procedures. I compare the performance of a model with and without data 
augmentation on the FER2013 dataset. 
 

Results 
 
The mean validation accuracy of the FER model trained without any data augmentation is 0.8132. The results of the 
only-include-one analysis (Table 2 and Table 3) indicate that each DA strategy produced about the same range of 
accuracy, precision, and recall (the mean accuracy is 0.8094, the mean precision is 0.8158, and the mean recall is 
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0.8009) except the brightness level. Brightness augmentation resulted in much lower accuracy (0.4423), so I excluded 
brightness level in the following experiments. The brightness level was an outlier. Vertical shift and horizontal flip 
have the best accuracy (0.8197 and 0.8180 respectively) whereas vertical flip and shear have the lowest accuracy 
(0.7965 and 0.7993 respectively.) The results are listed in Table 4. 
 
Table 4. FER model validation results for only-include-one experiments. 
 

DA Performance 

None  accuracy   mean = 0.813253, stdev = 0.004791, range = [0.808462, 0.818044] 
 precision   mean = 0.813845, stdev = 0.004785, range = [0.809060, 0.818630] 
 recall         mean = 0.810487, stdev = 0.004865, range = [0.805622, 0.815352] 

Zoom 
(range=0.15) 

 accuracy   mean = 0.816100, stdev = 0.004980, range = [0.811120, 0.821080] 
 precision   mean = 0.823098, stdev = 0.004948, range = [0.818150, 0.828046] 
 recall         mean = 0.811920, stdev = 0.005025, range = [0.806895, 0.816945] 

Horizontal flip  accuracy   mean = 0.818060, stdev = 0.004501, range = [0.813559, 0.822561] 
 precision   mean = 0.824090, stdev = 0.004387, range = [0.819703, 0.828477] 
 recall         mean = 0.811020, stdev = 0.004490, range = [0.806530, 0.815510] 

Rotation 
(range=15) 

 accuracy   mean = 0.802820, stdev = 0.006090, range = [0.796730, 0.808910] 
 precision   mean = 0.823529, stdev = 0.005991, range = [0.817538, 0.829520] 
 recall         mean = 0.772247, stdev = 0.006478, range = [0.765769, 0.778724] 

Shear 
(range=0.15) 

 accuracy   mean = 0.799313, stdev = 0.005082, range = [0.794231, 0.804395] 
 precision   mean = 0.806001, stdev = 0.005036, range = [0.800965, 0.811037] 
 recall         mean = 0.787000, stdev = 0.005005, range = [0.781995, 0.792005] 

Horizontal shift 
(range=0.15) 

 accuracy   mean = 0.809613, stdev = 0.005418, range = [0.804196, 0.815031] 
 precision   mean = 0.814779, stdev = 0.005373, range = [0.809406, 0.820153] 
 recall         mean = 0.806300, stdev = 0.005420, range = [0.800880, 0.811720] 

Vertical shift 
(range=0.15) 

 accuracy   mean = 0.819747, stdev = 0.004839, range = [0.814908, 0.824585] 
 precision   mean = 0.821994, stdev = 0.004881, range = [0.817113, 0.826874] 
 recall         mean = 0.815007, stdev = 0.004948, range = [0.810058, 0.819955] 

Vertical flip  accuracy   mean = 0.796507, stdev = 0.005580, range = [0.790926, 0.802087] 
 precision   mean = 0.798847, stdev = 0.005604, range = [0.793244, 0.804451] 
 recall         mean = 0.793160, stdev = 0.005683, range = [0.787477, 0.798843] 

Brightness 
(range: 0.3 - 0.9) 

 accuracy   mean = 0.442340, stdev = 0.006494, range = [0.435846, 0.448834] 
 precision   mean = 0.476429, stdev = 0.009094, range = [0.467336, 0.485523] 
 recall         mean = 0.282227, stdev = 0.006353, range = [0.275874, 0.288579] 

 
The mean validation accuracy of my FER model trained with all data augmentation is 0.8130, the mean precision is 
0.8259, and the mean recall is 0.7945. The mean accuracy of the ablation study is 0.8191, the mean precision is 0.8309, 
and the mean recall is 0.8043. Removing vertical flip resulted in the optimal mean validation accuracy of 0.8275. 
Removing rotation resulted in the lowest mean validation accuracy of 0.8147. The results are listed in Table 5. 
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Table 5. FER model validation results for ablation study. 
 

DA Performance 

All 7 DA accuracy   mean = 0.813007, stdev = 0.005316, range = [0.807690, 0.818323] 
precision   mean = 0.825921, stdev = 0.005068, range = [0.820853, 0.830989] 
recall         mean = 0.794453, stdev = 0.005411, range = [0.789042, 0.799864] 

No zoom accuracy   mean = 0.816433, stdev = 0.005758, range = [0.810675, 0.822192] 
precision   mean = 0.834433, stdev = 0.005519, range = [0.828914, 0.839952] 
recall         mean = 0.800333, stdev = 0.005936, range = [0.794397, 0.806270] 

No horizontal flip accuracy   mean = 0.816447, stdev = 0.006759, range = [0.809688, 0.823205] 
precision   mean = 0.827865, stdev = 0.006244, range = [0.821621, 0.834110] 
recall         mean = 0.804607, stdev = 0.006895, range = [0.797711, 0.811502] 

No rotation accuracy   mean = 0.814720, stdev = 0.005152, range = [0.809568, 0.819872] 
precision   mean = 0.832193, stdev = 0.005167, range = [0.827026, 0.837360] 
recall         mean = 0.796493, stdev = 0.005707, range = [0.790787, 0.802200] 

No shear accuracy   mean = 0.820160, stdev = 0.005494, range = [0.814666, 0.825654] 
precision   mean = 0.829786, stdev = 0.005230, range = [0.824556, 0.835016] 
recall         mean = 0.804660, stdev = 0.005537, range = [0.799123, 0.810197] 

No horizontal 
shift 

accuracy   mean = 0.822153, stdev = 0.005760, range = [0.816394, 0.827913] 
precision   mean = 0.831563, stdev = 0.005705, range = [0.825858, 0.837269] 
recall         mean = 0.810553, stdev = 0.005946, range = [0.804608, 0.816499] 

No vertical shift accuracy   mean = 0.816680, stdev = 0.004962, range = [0.811718, 0.821642] 
precision   mean = 0.826740, stdev = 0.004901, range = [0.821839, 0.831641] 
recall         mean = 0.803607, stdev = 0.004989, range = [0.798618, 0.808596] 

No vertical flip accuracy   mean = 0.827567, stdev = 0.004721, range = [0.822846, 0.832288] 
precision   mean = 0.834333, stdev = 0.004829, range = [0.829504, 0.839163] 
recall         mean = 0.810500, stdev = 0.005136, range = [0.805364, 0.815636] 

 
The results of hyperparameter optimization for one data augmentation at a time are listed in Table 6. The mean 
validation accuracy is 0.8120. The mean precision is 0.8198. The mean recall is 0.8019. The best validation accuracy 
is 0.8312 with a rotation range of 30. The lowest validation accuracy is 0.7993 with a shear range of 0.15.  
 
Table 6. FER model validation results for hyperparameter optimization for only-include-one experiments. 
 

DA Parameter 
values 

Performance 

Zoom 0.15 accuracy   mean = 0.809513, stdev = 0.005208, range = [0.804306, 0.814721] 
precision   mean = 0.818138, stdev = 0.005332, range = [0.812807, 0.823470] 
recall         mean = 0.801633, stdev = 0.005375, range = [0.796258, 0.807008] 
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0.25 accuracy   mean = 0.812673, stdev = 0.004963, range = [0.807710, 0.817637] 
precision   mean = 0.821708, stdev = 0.004831, range = [0.816876, 0.826539] 
recall         mean = 0.797653, stdev = 0.004972, range = [0.792681, 0.802626] 

0.35 accuracy   mean = 0.812073, stdev = 0.005240, range = [0.806833, 0.817313] 
precision   mean = 0.827452, stdev = 0.005226, range = [0.822226, 0.832679] 
recall         mean = 0.800653, stdev = 0.005367, range = [0.795287, 0.806020] 

0.50 accuracy   mean = 0.821340, stdev = 0.005570, range = [0.815770, 0.826910] 
precision   mean = 0.827328, stdev = 0.005457, range = [0.821872, 0.832785] 
recall         mean = 0.810893, stdev = 0.005771, range = [0.805123, 0.816664] 

0.75 accuracy   mean = 0.818193, stdev = 0.005226, range = [0.812968, 0.823419] 
precision   mean = 0.825749, stdev = 0.005109, range = [0.820640, 0.830857] 
recall         mean = 0.804940, stdev = 0.005417, range = [0.799523, 0.810357] 

 
Rotation 

15 accuracy   mean = 0.802820, stdev = 0.006090, range = [0.796730, 0.808910] 
precision   mean = 0.823529, stdev = 0.005991, range = [0.817538, 0.829520] 
recall         mean = 0.772247, stdev = 0.006478, range = [0.765769, 0.778724] 

30 accuracy   mean = 0.831253, stdev = 0.005277, range = [0.825977, 0.836530] 
precision   mean = 0.833038, stdev = 0.005348, range = [0.827690, 0.838386] 
recall         mean = 0.825673, stdev = 0.005268, range = [0.820405, 0.830942] 

45 accuracy   mean = 0.812207, stdev = 0.005793, range = [0.806413, 0.818000] 
precision   mean = 0.827020, stdev = 0.005625, range = [0.821394, 0.832645] 
recall         mean = 0.801100, stdev = 0.005771, range = [0.795329, 0.806871] 

60 accuracy   mean = 0.806360, stdev = 0.004890, range = [0.801470, 0.811250] 
precision   mean = 0.814915, stdev = 0.005049, range = [0.809866, 0.819964] 
recall         mean = 0.796513, stdev = 0.005074, range = [0.791440, 0.801587] 

75 accuracy   mean = 0.811273, stdev = 0.005445, range = [0.805829, 0.816718] 
precision   mean = 0.820934, stdev = 0.005352, range = [0.815582, 0.826285] 
recall         mean = 0.800393, stdev = 0.005441, range = [0.794953, 0.805834] 

 
Shear 

0.15 accuracy   mean = 0.799313, stdev = 0.005082, range = [0.794231, 0.804395] 
precision   mean = 0.806001, stdev = 0.005036, range = [0.800965, 0.811037] 
recall         mean = 0.787000, stdev = 0.005005, range = [0.781995, 0.792005] 

0.30 accuracy   mean = 0.804453, stdev = 0.005612, range = [0.798842, 0.810065] 
precision   mean = 0.810242, stdev = 0.005469, range = [0.804773, 0.815712] 
recall         mean = 0.800233, stdev = 0.005561, range = [0.794672, 0.805795] 

15.0 accuracy   mean = 0.811673, stdev = 0.005270, range = [0.806403, 0.816943] 
precision   mean = 0.814043, stdev = 0.005189, range = [0.808853, 0.819232] 
recall         mean = 0.807840, stdev = 0.005293, range = [0.802547, 0.813133] 

30.0 accuracy   mean = 0.810660, stdev = 0.005703, range = [0.804957, 0.816363] 
precision   mean = 0.817170, stdev = 0.005551, range = [0.811618, 0.822721] 
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recall         mean = 0.799840, stdev = 0.005627, range = [0.794213, 0.805467] 

45.0 accuracy   mean = 0.813853, stdev = 0.005276, range = [0.808577, 0.819129] 
precision   mean = 0.817617, stdev = 0.005373, range = [0.812244, 0.822990] 
recall         mean = 0.806547, stdev = 0.005509, range = [0.801038, 0.812056] 

Horizontal 
shift 

0.15 accuracy   mean = 0.805760, stdev = 0.005170, range = [0.800590, 0.810930] 
precision   mean = 0.814972, stdev = 0.005095, range = [0.809876, 0.820067] 
recall         mean = 0.791507, stdev = 0.005341, range = [0.786165, 0.796848] 

0.30 accuracy   mean = 0.809767, stdev = 0.005462, range = [0.804305, 0.815229] 
precision   mean = 0.810901, stdev = 0.005471, range = [0.805430, 0.816372] 
recall         mean = 0.805447, stdev = 0.005570, range = [0.799877, 0.811016] 

0.45 accuracy   mean = 0.804540, stdev = 0.005102, range = [0.799438, 0.809642] 
precision   mean = 0.816413, stdev = 0.005178, range = [0.811235, 0.821591] 
recall         mean = 0.793693, stdev = 0.005049, range = [0.788645, 0.798742] 

 
Vertical shift 

0.15 accuracy   mean = 0.819747, stdev = 0.004839, range = [0.814908, 0.824585] 
precision   mean = 0.821994, stdev = 0.004881, range = [0.817113, 0.826874] 
recall         mean = 0.815007, stdev = 0.004948, range = [0.810058, 0.819955] 

0.30 accuracy   mean = 0.820880, stdev = 0.005249, range = [0.815631, 0.826129] 
precision   mean = 0.826343, stdev = 0.005188, range = [0.821154, 0.831531] 
recall         mean = 0.812213, stdev = 0.005483, range = [0.806731, 0.817696] 

0.45 accuracy   mean = 0.815460, stdev = 0.005269, range = [0.810191, 0.820729] 
precision   mean = 0.820640, stdev = 0.005355, range = [0.815285, 0.825995] 
recall         mean = 0.809627, stdev = 0.005350, range = [0.804276, 0.814977] 

 
The validation accuracy, precision, and recall attained by the FER model using various training data set sizes 

with no data augmentation, and with seven common data augmentation strategies applied, are shown in Figure 2. The 
comparison of accuracy, precision, and recall are shown in Table 7.1, Table 7.2, and Table 7.3. I started with a training 
dataset with 250 images. The mean validation accuracy is 0.5233 without data augmentation. When I applied all data 
augmentation strategies, the mean validation accuracy decreased to 0.4394, which is much lower than the accuracy 
when no data augmentation was applied. When the training dataset size increases, the validation accuracy also 
increases for FER models with no data augmentation. However, the validation accuracy for the FER models with data 
augmentation remain within the same range [0.4394 - 0.4638] until the training dataset size is around 1,250, while the 
validation accuracy of the FER model with no data augmentation increases to 0.605. The accuracy of the FER model 
with data augmentation increases to 0.6035 when the dataset size is 1,500. The FER model with data augmentation 
starts performing better than the FER model without data augmentation when the dataset size is above 1,500, around 
1,750. The model continues to obtain better performance when the dataset size increases. The performance difference 
in Table 7.1 demonstrates the biggest improvement (around 7%), which occurs when the dataset size is between 3,000 
to 7,000 images. Although I continue to observe better performance while the dataset size increases, the improvement 
gradually decreases with increasing dataset sizes. 
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Figure 2. (a) Model accuracy and corresponding standard deviation. (b) Model precision and corresponding standard 
deviation. (c) Model recall and corresponding standard deviation. 
 

The precision difference listed in Table 7.2 shows a similar pattern. The precision when I use all seven data 
augmentation methods with a dataset of 1,500 images or less is worse than the precision obtained without using data 
augmentation. When the training set size is 1,750 images, the precision when the data augmentation methods are used 
starts to increase compared to when not applying the corresponding strategies. The precision improved slightly more 
than accuracy; the highest improvement in the precision was 11.94% while 7.34% for accuracy. 

The recall attained by the FER model with data augmentation applied exceeded the recall without data 
augmentation when the training data set size was 3,000. However, the improvement was not as significant as the 
improvement with accuracy and precision. The highest percentage of improvement is 4.32%. 
 
Table 7.1. FER model validation accuracy for various training set sizes with and without DA applied. 
 

Training set size Accuracy w/ DA Accuracy w/o DA Difference Improvement % 

250 43.94 52.33 -8.39  -16.03% 

500 43.11 57.20 -14.09 -24.63% 

750 44.01 59.06   -15.05 -25.49% 

1000 45.32 60.86   -15.54 -25.54% 

1250 46.38 60.51   -14.13 -23.35% 

1500 60.35 64.11    -3.76 -5.87% 

1750 71.10 67.45     3.65 5.41% 

2000 71.61 67.64     3.96 5.86% 

3000 74.04 69.05     4.99 7.23% 

4000 76.53 71.43     5.10 7.14% 

5000 77.88 72.55     5.33 7.34% 

6000 78.59 74.20     4.39 5.91% 
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7000 80.13 75.05     5.08 6.77% 

8000 79.26 75.96     3.31 4.35% 

9000 80.02 77.44     2.58 3.33% 

10000 80.96 76.99     3.98 5.17% 

12000 80.68 78.56     2.11 2.69% 

14000 81.67 78.65     3.02 3.84% 

16000 80.90 79.23     1.68 2.12% 

18000 81.61 79.64     1.97 2.48% 

19000 82.04 80.04     2.00 2.50% 

 
 
Table 7.2. FER model validation precision for various training set sizes with and without DA applied. 
 

Training set size Precision w/ DA Precision w/o DA Difference Improvement % 

250 45.72 52.63 -6.91 -13.13% 

500 44.65 58.34 -13.68 -23.46% 

750 48.35 62.37 -14.02 -22.48% 

1000 51.59 61.71 -10.13 -16.41% 

1250 51.14 64.51 -13.37 -20.72% 

1500 65.21 64.62 0.59 0.91% 

1750 74.95 68.32 6.63 9.70% 

2000 74.47 68.21 6.26 9.17% 

3000 77.77 69.47 8.30 11.94% 

4000 78.44 71.62 6.82 9.53% 

5000 79.94 73.29 6.65 9.07% 

6000 80.23 74.60 5.63 7.54% 

7000 81.50 75.55 5.94 7.87% 

8000 81.34 77.42 3.92 5.06% 

9000 82.21 77.92 4.29 5.50% 

10000 82.37 77.17 5.20 6.74% 
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12000 82.37 78.83 3.54 4.49% 

14000 83.15 78.87 4.28 5.43% 

16000 81.92 80.26 1.66 2.07% 

18000 83.03 80.19 2.83 3.53% 

19000 83.26 80.65 2.62 3.24% 

 
Table 7.3. FER model validation recall for various training set sizes with and without DA applied. 
 

Training set size Recall w/ DA Recall w/o DA Difference Improvement % 

250 34.92 51.38 -16.46 -32.04% 

500 35.56 55.92 -20.37 -36.42% 

750 21.51 53.65 -32.14 -59.91% 

1000 24.93 58.72 -33.80 -57.55% 

1250 27.68 51.75 -24.07 -46.51% 

1500 52.85 62.97 -10.12 -16.07% 

1750 66.41 66.73 -0.32 -0.48% 

2000 66.20 66.43 -0.23 -0.34% 

3000 68.47 68.07 0.40 0.59% 

4000 72.97 71.06 1.91 2.69% 

5000 74.21 71.14 3.07 4.32% 

6000 76.25 73.55 2.70 3.67% 

7000 76.87 74.75 2.11 2.83% 

8000 76.03 73.69 2.34 3.18% 

9000 77.84 77.30 0.54 0.70% 

10000 79.21 76.71 2.51 3.27% 

12000 78.15 78.27 -0.12 -0.16% 

14000 79.99 78.46 1.54 1.96% 

16000 79.53 78.37 1.16 1.48% 

18000 80.20 78.74 1.46 1.86% 
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19000 79.98 79.58 0.40 0.51%  

 

Discussion and Conclusion 
 
The primary insight from my experiments is that when the training dataset is smaller than the test dataset, artificially 
augmenting the training dataset actually hurts the prediction performance. When the training dataset is greater than 
the validation dataset, applying data augmentation to increase variation improves the model performance. However, 
the delta between performance with and without augmentation is reduced when the training dataset is sufficiently 
large. 

I find from the only-include-one data augmentation experiments that no specific data augmentation strategy 
performs significantly better than others. I observe, however, that the brightness level adjustment (dimmer images) 
even produces diminished accuracy perhaps due to the brightness making it more difficult to differentiate the human 
face and the background. The results of the ablation study also demonstrates no specific data augmentation strategy 
affecting the test accuracy more than others. Hyperparameter optimization experiment results show some data 
augmentation strategies with some parameter values may have slightly better performance than other combinations, 
but still, the difference (between 0.7993 and 0.8312) is not that significant.  

There are several limitations to this study. I only experimented on one dataset, FER2013, which was collected 
in the wild and already included several variations due to the heterogeneity of the dataset with respect to pose, view 
angles, and lighting conditions. In future iterations of this study, I hope to perform the same experiments on other 
datasets with limited variation, for example with datasets collected in the lab-controlled environment such as The 
Extended Cohn-Kanade Dataset (CK+) [41].  
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