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ABSTRACT 
 
Memories play a crucial role in the human life experience. Whether they are used to make decisions or understand 
current situations, memories influence the past, present, and future. However, some memories are unreliable; in the 
court of law, the false memories of victims can cause inaccurate verdicts. To reconstruct human memories directly 
from the brain, recent studies have used electroencephalographic (EEG) brain signals in machine learning frameworks 
like generative adversarial networks (GANs), which generates new data from old ones. However, traditional GANs 
tend to produce the same images, an issue called mode collapse. Therefore, a conditional variational autoencoder-
generative adversarial network (CVAE-GAN), which had not been used before in memory reconstruction, was devel-
oped to address GAN failures by jointly-training (1) an encoder and (2) GAN. CVAE-GAN correlated the MindBig-
Data dataset’s EEG brain signals with the corresponding ImageNet dataset images and produced new memories of 
participants, such as pandas, humans, and fish. CVAE-GAN’s Inception Score, which marked how diverse and distinct 
its generated images were, was 1.00 on average. The number of floating operations, or FLOPS, was 102 Gigaflops, 
which was less than the traditional GAN’s 198 Gigaflops. While limitations with time, computational memory, and 
mode collapse prevented the CVAE-GAN from recreating accurate memories, it still generated distinct image colors 
and general features. Future studies can build on existing network architectures and include more homogeneity in 
datasets. Ultimately, CVAE-GAN has the potential to advance new understandings of the brain and could elevate the 
memory reconstruction field. 
 

Introduction 
 
In order to combat the issue of false memories in daily life, the legal system, and making vital decisions in society, 
recent research has utilized machine learning to reconstruct memories directly from the brain to bypass the medium 
of true or false communication that must be stated when one conveys their thoughts. In addition to analyzing cognitive 
behaviors in the brain’s visual cortices, human memory reconstruction has several applications in the court of law 
(Shen et. al 2019). Forensic tools and facial recognition techniques can apply the technique of memory reconstruction 
to determine an accurate verdict, identify human bodies, and recognize culprits’ faces. 

In order to generate new memories, machine learning models must be provided brain data and corresponding 
images. Projecting imagined objects in a visual form in the physical world required the decoding of functional Mag-
netic Resonance Imaging (fMRI) and EEG (Electroencephalographic) brain signals in many studies. Brain-Computer 
Interfaces (BCI) have commonly been used in the field of brain-machine learning tasks to provide this data, such as 
EEG and fMRI brain scans. While fMRI has been widely used due to spatially showing brain activity in different 
cortices of the brain, fMRI machines are cost-heavy and time-inefficient due to the long process of brain scanning 
(Shen et. al, 2019). Although EEG brain signals cannot show regional brain activity, they can showcase graphical 
brain activity involving frequencies of voltage activity in EEG electrode sensors; in addition, EEG brain signals are 
relatively non-invasive, cost-effective, and time-efficient. However, less studies have applied machine learning to 
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EEG signals for memory reconstruction tasks due to fMRI’s capability to correlate regional brain activity with real-
world images. Similarly, the main challenges of reconstructing images with EEG signals lie in the notion that EEG 
signals do not have immediate visual features that can be directly extracted or corresponded to image features; this, in 
turn, makes it unclear how to correlate these brain signals with visual images.  

Previously, memory reconstruction tasks applicable to machine learning and EEG have generated coherent, 
detailed images (Kavasidis et al. 2017). Data fed into the machine learning model involved patients witnessing inter-
vals of real-world images while their EEG brain signals were recorded (Fares et al. 2020). After being told that these 
two data types corresponded to each other, the machine learning frameworks were then assigned with the task of 
recreating new representations of these real-world images (Ye et al. 2022).  

Recent studies have utilized frameworks, such as generative adversarial networks (GAN) and variational 
autoencoders (VAE) to reconstruct memories of dataset participants (Kavasidis et al., 2017). In these networks, feature 
extraction and image reconstruction processes are present. Because noise and unimportant frequencies are present in 
the EEG brain signal data, the VAE’s encoder network extracts relevant features from EEG brain signals based on the 
corresponding image categories. Then, a decoder “upsamples” the EEG features such that it creates a new image or 
memory; upsampling occurs when the model adds numbers to its inputs to increase the size of the data. Loss functions, 
which minimize the loss, or difference between a model’s desired and its actual output, takes into account the losses 
of both the encoder and decoder into its holistic calculation in the training process; therefore, this means that the 
training process allows these models to be trained together. On the other hand, the GAN needs a separate encoder to 
extract EEG brain signal information. The GAN is more comprehensive: in addition to having a decoder, or generator, 
model, the GAN framework has a discriminator network. The discriminator takes in the generator’s recreated images 
as input and produces a probability of whether the images are from the original dataset or are, in fact, produced by the 
generator. The generator tries to fool the discriminator by creating images that resemble the original image dataset’s 
patterns so closely that the discriminator guesses incorrectly. Therefore, the discriminator and generator compete with 
each other; if each network’s parameters are set such that they are balanced, the GAN model is capable of producing 
images resembling the original dataset. 

To evaluate how distinct and diverse these models’ generated images were, Inception scores (IS) were used: 
a higher score means more distinctiveness and diversity, and a lower score means the opposite (Kavasidis et al., 2017). 
The IS were relatively high with 5.07 for GAN and 4.49 for VAE (Kavasidis et al., 2017). However, certain drawbacks 
made it difficult to optimize memory reconstruction: mode collapse, an issue where GANs constantly produce similar 
images, showed internal limitations with network architectures. Inability to most effectively correlate spatial images 
with the two-dimensional space of EEG brain signals resulted in images that generally resembled, for example, pandas 
but could not show specific details of an image. However, it could be argued that the exclusion of image details was 
due to the GAN producing an accurate representation of the image areas that participants, in reality, focus on. Still, 
failures in relation to generating diverse sets of images still held true due to the encoder’s EEG feature extraction 
being separate from the GAN’s image reconstruction process.  

Therefore, the present work aimed to discover an optimal method for applying machine learning networks to 
EEG brain signals. Because previous implementations of CVAE-GAN have not been applied to multimodal data or 
the memory reconstruction task, a conditional variational autoencoder-generative adversarial network (CVAE-GAN) 
was developed to solve these issues. Because the VAE and GAN’s trained jointly–a process similar to the implemen-
tation of loss functions in previous VAE models, the GAN acquired an accurate sense of how each EEG latent feature 
vector matched with the latent space of an image (Bao et al., 2017). The CVAE-GAN framework consisted of four 
jointly connected networks: an encoder, generator, discriminator, and classifier. Similar to previous studies’ models, 
the encoder extracted relevant frequency features from EEG signals, and the generator-discriminator system worked 
in a similar way to traditional GAN frameworks. Since an image category value, or condition, was fed into the encoder 
and generator, the overall model had a clearer sense of how to reconstruct images based on the EEG feature extraction 
process. Thus, this allowed the model to produce images respective to their categories, addressing the issue of images 
blending together due to the ineffective separation of their corresponding categories. In addition, the classifier model, 
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which is extended from the generator, predicted an image category to gauge if the network was holistically factoring 
in accurate image categories into its image recreation process (Bao et al.,  2017).  

With this in mind, memory reconstruction with improved luminance distributions in images was accom-
plished through the implementation of the CVAE-GAN’s jointly-connected networks. Aiming to address ethical di-
lemmas involved with machine learning-memory reconstruction, brain signal inputs were only provided by the user’s 
permission, and images reconstructed would be privatized towards the user in future software.  
 

Methods 
 
The proposed model combined the concept of a multimodal network with the prospects of CVAE-GAN. The CVAE-
GAN’s encoder network extracted latent features from the EEG data. The extracted features were then sent as inputs 
to the generator network. For each image in the training process, its respective conditional label was sent into the 
encoder and generator as a secondary input apart from the EEG signal samples.  

The main machine learning library, which provided the necessary algorithm and architectures to train ma-
chine learning models, was Keras with a Tensorflow backend; the program was executed by Compute Unified Device 
Architecture (CUDA®) and CUDA® Deep Neural Network library (cuDNN), which optimized the graphics pro-
cessing unit, or GPU, usage in the machine learning runtime. 

Data: MindBigData’s “IMAGENET of the Brain'', which used an EEG headset to collect brain signal data, 
was the public dataset utilized in the present study to conduct machine learning techniques on; the headset itself was 
built on the standard international 10-20 electrode system. Patients in the data collection process paid close attention 
to images from the ImageNet database and had their EEG brain signals recorded with 5-channel electrodes. These 
electrodes were labeled AF4, T7, T8, AF3, and Pz, denoting channels on different locations on the head, which cor-
related to spatial brain regions. 
 

 
Figure 1. Alpha (left) and delta (right) signals. Samples (Hz) are on the x-axis; peaks (microvolts) are on the y-axis. 
 

Using MNE, a Python library utilized for brain-signal processing, alpha signals were extracted with lower 
and higher frequencies of 0.4 and 0.5, while delta signals were filtered with lower and higher frequencies of 4 and 8. 
Delta signals are mostly related to “deep sleep” brain states, which may correspond to deep thinking or memory; alpha 
signals are mostly associated with relaxed and awake brain states, which can provide the conditions for the user to 
think about their own memories. 

Many libraries were used for assisting the machine learning process. Matplotlib plotted the EEG data and 
model’s produced images; OpenCV, which provided image-processing functions, scaled the images to 128 by 128 
pixels; in order to provide floating numbers to the machine learning model in a format it could understand, Numpy 
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was utilized to manipulate data in network architectures and training. MNE analyzed EEG and MEG brain signals, 
while providing algorithms, such as filters, to efficiently pass through brain data into deep learning models.  

After preprocessing the brain signal, image, and string data using MNE and other various libraries described, 
the encoder network received the EEG data and corresponding conditional labels. It then produced a latent vector that 
contained only the relevant features of the EEG data. 
 

 
Figure 2. Encoder network flowchart. The EEG signals were fed into a set of LSTM and Dense layers that used kernels 
to extract data values from the EEG data. It produced an array with 569 values corresponding to predicted image 
categories for each EEG feature. 
 
Feedforward process: The developed encoder network was a Long-Short Term Memory (LSTM) network consisting 
of 128 units and one dense layer, which was used to traverse temporally through these EEG sequences and extract 
features based off of the provided image category that matches with the EEG input. The purpose behind why LSTM 
was used for the encoder specifically was that the LSTM layers had forget, input, and output gates; these gates served 
to (1) memorize long-term EEG sequence patterns, (2) filter new EEG data inputs to forget unimportant information 
relative to the layer’s long-term pattern, (3) and update the long-term memory based on relevant patterns. The LSTM 
layers could be thought of as neural networks themselves, conducting operations within its cells and filtering infor-
mation by multiplying the inputs by 0 to 1, where the most irrelevant data was multiplied by 0 and the retained data 
by 1. 

Once the EEG feature extraction was completed, the newly encoded array produced by the encoder acted as 
an image input to the GAN network. The GAN’s assigned task was to improve that image such that it resembled the 
original image data, such as an airplane or pumpkin.  

In addition, the conditional label input being sent into the encoder allowed the encoder to extract EEG signals 
corresponding to their images under one specific category. For example, a sample dataset would include only zebras 
and human faces. In order to generate images relevant only to human faces, the encoder would independently learn 
EEG features specific to the visualization of human faces, not zebras. This conditional label was also sent through the 
GAN to generate images based on their respective categories. 
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Figure 3. Overall encoder to generator process. EEG signals were fed into the encoder, where output features z were 
fed into the generator along with conditional integers indicating image categories. 
 

After its feedforward process, the encoder’s produced EEG features, which were represented as latent vec-
tors, served as inputs to the GAN’s generator network. The generator’s purpose was to (1) produce images based on 
the EEG brain signals and conditional labels it was given and (2) adjust these “fake” images–via the generator’s own 
weights and biases–to accurately depict the original image features. 
 

 
Figure 4. Generator architecture. Input EEG features from the encoder (left-most layer) were upsampled into an image 
(right-most layer). 
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The generator model received the EEG input features of shape 384, meaning 384 Hz of samples. The model 
architecture included an initial input layer that multiplied both the conditional label and EEG feature inputs together 
into one matrix. This matrix was fed into a new dense layer with 128 units; following this layer was batch normaliza-
tion, which was a layer that normalized its inputs such that training was more stable, and rectified linear unit (ReLU) 
activation; activation functions were used in the neural network to activate and deactivate certain nodes for a final 
prediction. To increase the dimension size of the features while retaining necessary information, convolutional trans-
pose layers–filters being 256, 128, 64, and 32 and kernel sizes being 3x3, 3x3, 5x5, and 3x3 respectively–were used 
to turn these EEG features into images. The final convolutional transpose layer reshaped the input matrix into an RGB 
(Red-Green-Blue), or colored, image, and then the hyperbolic tangent activation resided in the output layer. The hy-
perbolic tangent function was used to normalize the images from integers -1 to 1. Because the original dataset images 
served as ground truths for the CVAE-GAN’s training, these images, along with the generator’s produced ones, served 
as inputs to the discriminator.  
 

 
Figure 5. Discriminator architecture. Through a series of convolutional layers, the network produced a probability of 
an image being produced by the generator. 
 

In order to build the discriminator architecture, four convolutional blocks, in total, were implemented. Fol-
lowing the input layer, which provided a generated and real image to the network, a downsampling block with a series 
of layers was integrated into the network. Each block had a two-dimensional convolution layer, batch normalization 
layer, and a leaky ReLU activation layer with an alpha value at 0.3; these blocks served the purpose of extracting 
image features from the data that were most relevant to predicting their “realness”. After being set into the four 
downsampling blocks, the data was then set into global average pooling, leaky ReLU, dense, and sigmoid activation 
layers in order to dimensionally reduce the data into a single probability value. 
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In machine learning, differences between what the model thinks is correct and what is actually correct can 
occur, which is why parameters called weights and biases are tweaked to find the right spot where the model accurately 
predicted the true outcome. In the present study, optimizers, such as Adam, served to reduce these differences, while 
making sure that the training model did not overfit–or train too closely on the image data. 

The generator’s produced images were also sent to the classifier model as inputs. Since the model was trained 
end-to-end, the classifier’s output affected the generator’s. More specifically, the intermediate feature matching layer 
of the classification network was minimized within the generator’s loss function. 

 

 
Figure 6. Encoder architecture. The encoder architecture consisted of four convolutional blocks but produced a cate-
gorical probability for each image input. 
 

The classifier’s architecture consisted of basic convolutional layers with 64, 128, 256, 128, 64 filters with 
kernel sizes of 3x3, a dense layer, and a final sigmoid activation function; the sigmoid activation function ensures that 
the output is an integer between 0 and 1, which indicates the probability of an image belonging to a specific image 
category. The loss function specific to the classifier was softmax, which was not involved in the other CVAE-GAN 
components. Finally, the output of the classification network was an array of probabilities for each image category 
denoted by the chance of an image falling into them. The encoder’s architecture was similar to the discriminator; 
however, the labels provided to the classifier were image categories, not real or fake labels fed to the discriminator. 
 

Results 
 
Because qualitative observations could not show whether results indicated progress or simple feedforward GAN gen-
eration of images, the use of qualitative metrics were crucial to analyzing the performance of the CVAE-GAN. Incep-
tion Score (IS) was used to determine the overall distinctness and diversity in color, features, and brightness of the 
images. Using the InceptionV3 model from the Keras machine learning library, the pre-trained model was run on the 
generated CVAE-GAN images, outputting categorical probabilities as to how likely an image belonged to a category 
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of, for example, cats, dogs, and lions. If the image is distinct, the probability distribution of the categories for that 
image will not be uniform. Once the individual probability distributions are added up across all images, if all of the 
images are uniquely distinct, the result should be an approximately uniform distribution. 
 

 
Figure 7. Inception Score calculation. If more distinctness is present in the generated image set, the KL divergence 
loss will calculate a higher IS score.  
 

By using a Kullback-Leibler (KL) Divergence formula, the calculation was capable of modeling the differ-
ence between the individual probability distributions and the overall marginal distribution, contributing to the overall 
IS score.  

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃 || 𝑄𝑄)  = �
𝑥𝑥∈𝑋𝑋

𝑃𝑃(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙(
𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥)

) 

 
The KL Divergence equation takes the logarithmic difference of both the individual image’s categorical 

probability distributions and marginal distributions, resulting in the expected value for mean difference. Matrix row 
operations were conducted in the program to achieve these probability distributions and calculations. 
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Figure 8. 0 to 100 training iterations: colors present in the generated images (top) were generally matched up with 
their real image counterparts (bottom), but qualitatively distinct features were not present in the produced images. 
 

 
Figure 9. 100 to 200 training iterations: the generated images improved slightly, and certain parts of the images that 
showed color difference indicated the CVAE-GAN’s ROI.  
 

Images shown are samples from the 1047 images generated by the CVAE-GAN. Through observation, image 
colors changed drastically between one batch of iterations and proceeding ones; this indicated (1) the lack of similarity 
between the original images being fed in, (2) a medium-high learning rate, and (3) the model’s inadequacies in taking 
into account coarseness, contrast, line-likeness, and roughness components of an image. After testing different values 
for learning rates, higher values resulted in a drastic change between training batches of generated images, which was 
to be expected. A learning rate less than the ideal value caused too little adjustment in the generated samples due to 
undercorrection of the GAN’s weights. Whether or not running the training loop for a longer period of time would 
improve the model performance is unknown; however, due to memory limitations, the program stops short at around 
250 iterations. 
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Table 1. The floating operations (FLOPS) with units of GIGAFLOPS (109) were used to standardize computational 
system performance. 
 

 Traditional GAN 
CVAE-GAN 

 
 

Brain2Image GAN 
(Kavasidis et al., 

2017) 

Brain2Image VAE 
(Kavasidis et al., 

2017) 

IS Average 8.55 1.00 5.07 4.49 

IS Standard Dev. 1.54 1.82 x 10-4 - - 

GIGAFLOPS 198 102 - - 

 
The IS average and standard deviation were both low–1.00 and 1.82 x 10-4 respectively–for the CVAE-GAN, 

compared to the traditional GAN’s 8.55, Brain2Image GAN’s 5.07, and Brain2Image VAE’s 4.49 average scores. 
This matches with a qualitative observation of the generated images, where general colors match with the original 
dataset images but distinct features do not. Changing the architectures of the discriminator and generator or imple-
menting customized loss functions to take into account multiple model losses are viable options to combat this issue. 
Otherwise, a major issue in the dataset itself is that the lack of images per category makes it difficult to train the GAN 
with consistency. 569 categories are far too many to be expecting the GAN to create coherent results; an attempt could 
be made to change the dataset entirely, or condense the images into one category and combining all relevant images 
into that category, which means that all human faces would go under one category and the model would train on this. 

On the other hand, the floating operations (FLOPS) were quite low on the model due to the significantly 
lowered amount of model parameters and layers within the networks’ architectures. However, there was a tradeoff 
between model performance and computational performance. Whether or not the model would have optimized 
memory reconstruction while maintaining its computational efficiency was also not yet known due to time constraints.  
 

Conclusion 
 
In the present work, the CVAE-GAN model was used as an optimized alternative to previous machine learning net-
works, such as GAN, VAE, and conditional GAN, to optimize images in the task of memory reconstruction. The 
model consisted of encoder, generator, discriminator, and classifier networks–all of which were trained jointly, or all 
together. The process included the encoder breaking down EEG signals into features; the generator reconstructing 
images with EEG latent features; the discriminator competing with the generator to improve the GAN’s performance; 
and the classifier predicting image categories, in order to provide the generator an idea of whether it reconstructed 
images based on their categories well enough or not. Specialized preprocessing and network architectures were im-
plemented in the program with machine learning libraries as the backbone of the CVAE-GAN’s development. By 
virtue of the IS and FLOPS metrics, which were used to determine the image accuracy and computational efficiency 
of the model, the CVAE-GAN was not able to produce images with distinct features that resembled real-world images; 
however, it was able to recreate the general colors of the original dataset images. Failure to properly implement image 
features in the CVAE-GAN suggests not a correlation shortcoming between EEG signals and images, but an issue 
with the lack of homogeneity in the MindBigData’s image dataset and implementation of internal loss functions.  
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Limitations 
 
A lack of homogeneity, or an abundance of image categories for far fewer images, played a role in the CVAE-GAN’s 
overcorrection in the training process. For example, batches of images were diverse, and the CVAE-GAN generated 
images with different colors after each training iteration.  

In addition, because the Random Access Memory (RAM), which refers to the short-term memory in the 
Central Processing Unit (CPU) that is read and reset every runtime, was limited to 16 Gigabytes, the amount of training 
iterations for the CVAE-GAN was limited to 250. If the images were rescaled to 64 by 64 pixels or if less EEG samples 
were taken, less data would be present while more training iterations would occur. For this reason, previously stated 
tradeoffs between model and computational performance must be combated; ideally, the model should have been able 
to run training iterations over the entire dataset.  

Another contribution to the CVAE-GAN’s inability to produce images resembling the original dataset was 
the exclusion of customized loss functions (Bao et al. 2017). In order for the amount of error for each of the four 
networks to be taken into account for the CVAE-GAN’s training process, customized loss functions, such as style loss 
and KL Divergence loss, could have been used to optimize every aspect of the CVAE-GAN. For example, the classi-
fier’s predicted image category outputs must have an effect on how the generator decides to produce its images based 
on the original categories. The encoder’s extraction of EEG signal features must influence how the generator produces 
images from these EEG features and how the classifier predicts corresponding image categories. The lack of intercon-
nectedness led to the networks being unable to systematically train. 
 
Future Studies 
 
The use of several categories are practical in the real-world, but, for pure experimentation of memory reconstruction, 
implementation of only one or a few categories may constitute the usage of a traditional GAN or VAE, as opposed to 
a multimodal CVAE-GAN network. Because batches of images across consecutive training iterations had different 
image categories, future work can instead focus on one image category and record corresponding EEG signals to 
optimize the model in a more consistent manner.  

In order to more effectively correlate EEG features with generated images, the EEG feature vectors them-
selves can be added into the discriminator network’s layers (Kavasidis et al. 2017). In previous studies, the inclusion 
of EEG features in networks has shown to produce coherent images, but, due to the already complex nature of the 
CVAE-GAN, this aspect was omitted. Future work may consider reinstating this method into the CVAE-GAN. 

On another note, the preprocessing methods could also be altered. In the future, separate networks may run 
on raw EEG signals to detect frequencies related to memories; these modified models may involve adding more gates 
to the LSTM network, implementing custom layers specifically meant for EEG processing, or replacing CVAE-GAN 
itself with other reconstruction models (Fares et al. 2020).  

Once these implementations have been made, machine learning models in relation to memory reconstruction 
could be trained on videos corresponding with EEG signals, which may lead to further advances in smoother transi-
tions in generative models. Furthermore, applications in memory reconstruction technology include not just in foren-
sics techniques to accurately assist court cases, but also in humanistic tasks: for instance, recovering past memories 
can be the first step to assistance in trauma. As continual development in the field of machine learning shows promise 
for successful memory reconstruction, future endeavors correlating the brain to the physical world may impact human 
lives for years to come. 
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