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ABSTRACT 
 
This study aims to design personalized machine learning models for the classification of time-series data to detect 
freezing of gait (FoG) in Parkinsons’ patients in short time intervals. FoG is the medical terminology for sudden 
episodes of an inability to move in patients that suffer from Parkinson’s disease. Data collected experimentally by 
Xuanwu Hospital were used. Each 0.002-second interval is labeled as FoG positive or negative by physicians. Using 
information gain statistics, it was determined that out of 58 features of accelerometer, EEG, and EMG measurements, 
35 measurements provide the most information about FoG presence. Features were normalized via z-score normali-
zation. For feature vectors, data are grouped into 0.5-second batches with .002 second timeframes for LSTM; while 
data are grouped into 0.5-second intervals for other models. The FoG positive/negative classes were balanced through 
SMOTE. All models were hyperparameter trained through 10-fold cross-validation. The F-1 scores of LSTM, Random 
Forest, SVM, Decision Tree, and Logistic Regression are 89.71%, 89.69%,  87.00%, 74.44%, 67.21% respectively. 
Of the models analyzed, LSTM has the highest recall at 93.16%, while Random Forest has the highest precision at 
94.34%. LSTM detects the most positive instances, while Random Forest has precise detection. LSTM has a higher 
F-1 score, indicating it is better at balancing precision and recall. These personalized short interval-input models can 
be implemented in wearable devices to detect freezing of gait to aid physicians’ assessment of disease severity and 
treatment. 
 
Methods 
 
Data Description and Preparation 
 
Table 1: Sensor information about the experimental study in Xuanwu Hospital.10 

 

Sensing Type Sensor system Number of sensors Sensor location 

28D-EEG The wireless 28 FPI. FP2. F3. F4. C3. C4. 
P3. P4. Q1, O2. F7,F8,1 
P7. P8, Fz, Cz, Pz, FC1, 
FC2. CP1, CP2. FC5, FC6, 
CP5, CP6 TP9* TP10* 
TO** 
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3D-EMG MOVE 3 Gastrocnemius muscle of 
right leg. Tibialis anterior 
muscle of left and right 
legs 

3D-accelerometer 3D-
Gyro 

MPU6050 4 Lateral tibia of left and 
right legs Fifth lumbar 
spine Wrist 

ID-SC LM324 
 

2 The second belly of the in-
dex finger and middle fin-
ger of the left hand 

 
Publicly available data published by Xuanwu Hospital in Beijing, China were used to build classification 

models to detect freezing of gait. The data—consisting of EEG brain signals; EMG, ECG, and  Electrooculogram 
signals; and acceleration data—were collected while the twelve patients accomplished tasks consisting of certain 
movements. During the process, two doctors labeled the data as either freezing of gait positive (1) or freezing of gait 
negative (0)6. 

 
Figure 1: First five P-values for likelihood of Patient 1 and 2 features coming from the same distribution. 

 
The Kolmogorov-Smirnov Test was used to determine whether the feature distributions of the patients vary 

significantly. By running the test between all patient combinations, it was determined that the features come from 
different distributions with respect to the patients since the probability of the data coming from the same distribution 
was less than 5% for all feature combinations across all patients. Since there are only 12 samples of patient data and 
feature distributions are distinct, a generalized detection model for all patients cannot be developed. Thus, personalized 
models are developed. 
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Figure 2: Graph of information gain across 58 features of Patient 1 (X-axis: decrease in entropy; Y-axis: features). 

 
Patient 1’s data was imported. Information gain statistics were used to determine which features are most 

relevant to the classification problem. For this purpose, the features can be grouped into three categories: EEG signals 
(1-25), EMG/ECG/Electrooculogram signals (26-30), and acceleration data (31-58). It was determined that EEG sig-
nals decreased the entropy with respect to freezing of gait classification by the least amount, and thus those features 
were excluded in the training process. 

In the experiment, data were collected in 0.002-second intervals. However, to make feature vectors, data 
were grouped into 0.5-second intervals to provide the model with more information for detection. 0.5-second intervals 
with one or more instances of freezing of gait were labeled freezing of gait positive and the rest were labeled freezing 
of gait negative. An exception is the LSTM neural network, for which the data was manipulated into a 3-D array of 
shape (number of 0.5-second intervals, 250, 35). 

Every recorded feature was normalized through z-score normalization to scale the data as the number of 
standard deviations from the mean based on the means and standard deviations of the 35 measurements. This step is 
important for many reasons, including ensuring computationally friendly vectors for the gradient descent algorithm 
and consistency during regularization. 

Synthetic minority oversampling was used to oversample the minority class, freezing of gait positive. This 
technique synthesizes data by iteratively selecting a random data point from the minority class and synthesizing a data 
point at a random distance between it and its nearest neighbor. This technique is effective for the dataset at hand since 
it consists of continuous numerical features. Synthesizing new data points rather than the more naive method of ran-
domly duplicating existing ones reduces variability of the resulting models’ classification decisions. 
Metrics Description 

The following metrics were utilized to train hyperparameters and compare models: 
Equation 1: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  (𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇)/𝐴𝐴𝑎𝑎𝑎𝑎 

Accuracy is the proportion of data classified correctly. It is the proportion of 0.5-second intervals that are 
correctly classified. 
Equation 2: 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇) 

Precision is the proportion of data correctly classified as positive out of all data classified as positive. It is 
the proportion of 0.5-second intervals that are correctly classified as freezing of gait positive out of the 0.5-second 
intervals that are classified as freezing of gait positive. 
Equation 3: 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇) 
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Recall is the proportion of data correctly classified as positive out of all real positives. It is the proportion of 
0.5 second intervals that are correctly classified as freezing of gait positive out of the 0.5 second intervals in which 
the patient experienced freezing of gait. 
Equation 4: 𝐹𝐹1 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =  (2 𝑥𝑥 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎) 

F1 Score is the harmonic mean of precision and recall. 
An ROC curve displays  the relationship between the true positive rate and false positive rate given a fluid 

decision boundary. An area under the curve that is closer to one indicates a model that is able to better differentiate 
between positive cases and negative cases, while an area under the curve that is closer to half indicates a model 
performance that is close to randomness. 
Models Description 
Logistic Regression 
Equation 5: 𝑝𝑝(𝑥𝑥)  =  1

1+𝑒𝑒−𝛽𝛽𝛽𝛽
 

Logistic regression utilizes the sigmoid function to map data points to their respective probabilities.  
Equation 6: 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑎𝑎(𝑝𝑝|𝑌𝑌)  =  −∑𝑖𝑖 𝐴𝐴𝑖𝑖𝑎𝑎𝑃𝑃𝑙𝑙(𝑝𝑝𝑖𝑖) + (1 − 𝐴𝐴𝑖𝑖)𝑎𝑎𝑃𝑃𝑙𝑙(1 −  𝑝𝑝𝑖𝑖) 
 The negative-log likelihood function is defined based on the training data and minimized through the gradient 
descent algorithm. In this way, the curve is fit to the training data.  
Equation 7: 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑎𝑎(𝑝𝑝|𝑌𝑌)  =  −∑𝑖𝑖 𝐴𝐴𝑖𝑖𝑎𝑎𝑃𝑃𝑙𝑙(𝑝𝑝𝑖𝑖) + (1 − 𝐴𝐴𝑖𝑖)𝑎𝑎𝑃𝑃𝑙𝑙(1 −  𝑝𝑝𝑖𝑖) + 𝜆𝜆∑𝑁𝑁

𝑖𝑖=1 |𝑤𝑤𝑖𝑖| 
 L1 regularization can be utilized to penalize the magnitude of feature weights by adding the summation of 
the weights to the loss function. The intent is to produce a model that is generalizable to data beyond the training data. 
The 𝜆𝜆 value is selected through cross-validation. 
Soft-Margin Support Vector Machine 

A Soft-Margin Support Vector machine separates the classes by maximizing the margin between the support 
vector and decision boundary. Some error is tolerated for the sake of increasing model bias to reduce model variability.  

Equation 8: 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑃𝑃𝑃𝑃 (�|𝑤𝑤|�
2

+ 𝜆𝜆∑𝑁𝑁
𝑛𝑛=1 𝜉𝜉𝑛𝑛) 

 The loss function above is utilized to calculate the decision margin. λ is selected through cross validation. As 
λ increases, less error is tolerated. As λ decreases, more error is tolerated.  
Equation 9: 𝜉𝜉𝑛𝑛 = 𝑚𝑚𝐴𝐴𝑥𝑥 (0, 1 − 𝐴𝐴𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏)) 
 Error (𝜀𝜀) is calculated according to the hinge-loss formula above. 
Decision Tree 

Decision Trees are trained through if/else conditions in a hierarchical structure. They are easily interpretable. 
Their decision boundaries are piecewise in nature. 
Equation 9 (Gini impurity): 𝐼𝐼(𝐴𝐴)  =  𝑝𝑝(1 − 𝑝𝑝) 
Equation 10 (Entropy measure): 𝐼𝐼(𝐴𝐴)  =  −𝑝𝑝𝑎𝑎𝑃𝑃𝑙𝑙2(𝑝𝑝) − (1 − 𝑝𝑝)𝑎𝑎𝑃𝑃𝑙𝑙2(1 − 𝑝𝑝) 
Where A is the set of data and p is the proportion of misclassified records in a partition. 

The splitting criteria, either Gini or Entropy, is chosen through cross-validation. The chosen criteria is used 
to determine the optimal split to maximize homogeneity in the resulting leafs. 

Tree complexity can be controlled by defining the minimum samples in each leaf. A leaf is not split into 
portions smaller than the defined value. The value is determined through cross-validation. 
Long-Short Term Memory Neural Network 

An LSTM neural network consists of a forget gate, input gate, and output gate.   
Forget Gate 

The forget gate has two inputs, ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡, where ℎ𝑡𝑡−1 is the output from the previous cell and xt is the 
input at the current time-step. The inputs, multiplied by the weight matrices and having a bias added, are inputted into 
the sigmoid function to determine what percentage of the values to keep and discard. The cell state is multiplied by 
the resulting output8. 
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Input Gate 
The input gate has the inputs  ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡. The sigmoid function is used to determine a vector consisting of 

values from 0 to 1 based on the inputs to regulate the information that is being added. The tanh function is used to 
determine an output vector consisting of values from -1 to 1 that is multiplied by the sigmoid function’s output. The 
resulting values are added to the cell state8. 
Output Gate 

The output gate has the inputs ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡, and the cell state. The tanh function is applied to the cell state, scaling 
its values from -1 to 1. The sigmoid function is used to determine values from 0 to 1 based on the inputs ht-1 and xt 
to regulate the output at the particular time-step. The resulting vector is inputted as the hidden state for the next cell 
state which evaluates for the next time step8.  
Adaptation to Classifying Freezing of Gait 
 Training features are inputted into the neural network as a 3-D array of the shape (batches, time-steps, fea-
tures). Each batch is a 0.5 second interval, while each time-step is each discrete 0.002 second recording. The features 
are the 35 recorded metrics. To use LSTM for classification, the final layer in the neural network is a sigmoid function. 
After the LSTM layer, ReLu dense layers are added for further pattern recognition. The final neural network architec-
ture consists of an LSTM layer, 5 ReLu dense layers, a final sigmoid dense layer, and binary cross-entropy as the loss 
function. 

 
Results 

 
Logistic Regression 
 
A 𝜆𝜆 of 2 was selected for L1 regularization using 10-fold cross-validation. Accuracy was used as the evaluation metric 
for the hyperparameter training. 
Results 

 
 
Figure 3: Performance of logistic regression model with L1 regularization. Accuracy, precision, recall, F-1 score, ROC 
metrics, and confusion matrix are displayed. 
  

The results still do not indicate a reliable model. Both precision and recall are low, indicating that Logistic 
Regression is not suitable for freezing of gait classification. 
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Support Vector Machine 
 

Out of the linear, polynomial, radial basis, and sigmoid kernels, the radial basis kernel was selected using 10-
fold cross-validation. A 𝜆𝜆 of 0.05 was selected for soft-margin error tolerance using 10-fold cross-validation. Accuracy 
was used as the evaluation metric for the hyperparameter training. 

 
Results 

 
 
Figure 4: Performance of hyperparameter trained SVM model. Accuracy, precision, recall, F-1 score, ROC metrics, 
and confusion matrix are displayed. 

 
The Support Vector Machine model performs noticeably better than the Logistic Regression model. How-

ever, its precision (91.5%) is greater than its recall (82.9%), indicating that its capability to avoid false positives comes 
with the tradeoff of outputting more false negatives. This indicates that the Support Vector Machine model is better 
at classifying freezing of gait negative instances than freezing of gait positive instances. 
Decision Tree 
 Through 10-fold cross-validation, out of gini and entropy, gini was selected as the splitting criteria with 
accuracy as the evaluation metric. 3 samples were selected as the minimum samples per leaf using 10-fold cross-
validation. Adding restrictions on minimum impurity decrease seemed to have a negative effect on accuracy as seen 
with the 10-fold cross-validation. Therefore, no restrictions were placed on the impurity decrease for splitting. Accu-
racy was used as the evaluation metric for hyperparameter training.  
 
Results 

 
 
Figure 5: Performance of hyperparameter trained Decision Tree model. Accuracy, precision, recall, F-1 score, ROC 
metrics, and confusion matrix are displayed. 
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 The Decision Tree model’s ROC curve displays an ability to distinguish between positive and negative cases, 
but it is not as effective as the Support Vector Machine model. Similar to the Support Vector Machine model, its 
precision (78.3%) is greater than its recall (70.9%), indicating that its capability to avoid false positives comes with 
the tradeoff of outputting more false negatives. This indicates that the Decision Tree model is better at classifying 
freezing of gait negative instances than freezing of gait positive instances. 
 
Random Forest 
 
The random forest was constructed with 100 decision trees with the same hyperparameters as those selected for the 
standalone decision tree classification model through hyperparameter training. 
Results 

 
 
Figure 6: Performance of Random Forest model. Accuracy, precision, recall, F-1 score, ROC metrics, and confusion 
matrix are displayed. 
  
The Random Forest model performs surprisingly well given that the Decision Tree model has modest results.very 
well. Like the previous two models, its precision (91.5%) is greater than its recall (82.9%), indicating that its capability 
to avoid false positives comes with the tradeoff of outputting more false negatives. This indicates that the Support 
Vector Machine model is better at classifying freezing of gait negative instances than freezing of gait positive in-
stances. 
 
LSTM Neural Network 
 
The LSTM neural network consists of an LSTM layer, 5 ReLu dense layers, a final sigmoid dense layer, and binary 
cross-entropy as the loss function. Hyperparameters, such as L1 regularization lambda values and number of epochs, 
were selected through held-out validation data (split from the training data). Then, the model was trained with all the 
training data and evaluated on the testing data. 
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Results 

 
 
Figure 7: Performance of LSTM model. Accuracy, precision, recall, F-1 score, ROC metrics, and confusion matrix 
are displayed. 
 The LSTM neural network performs exceptionally well given the context of the problem at hand. The LSTM 
neural network has the best recall at 93.2%. Its recall is greater than its precision (86.5%), indicating that its capability 
to detect freezing of gait positive instances is at the tradeoff of outputting false positives. It also has a harmonic mean 
(89.7%) that is about the same as the Random Forest’s harmonic mean (89.7%). 
 

Discussion 
 
Table 2: Comparison of model performance metrics on testing data. Boxes corresponding to the best model(s) for 
every metric are highlighted. 

 Logistic Re-
gression 

SVM Decision Tree Random For-
est 

LSTM 

Accuracy 0.731788 0.903974 0.811258 0.923841 0.917219 

Precision 0.638462 0.915094 0.783019 0.943396 0.865079 

Recall 0.709402 0.829060 0.709402 0.854701 0.931624 

F1 Score 0.672065 0.869955 0.744395 0.896861 0.897119 

 
The best algorithm in the context of detecting freezing of gait for this particular patient is the LSTM neural 

network, considering the high recall of 93.2%. Furthermore, LSTM is tied with Random Forest for best F-1 score, 
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indicating that both models are equally good at balancing precision and recall. However, LSTM tips the balance to-
wards better recall, which is most important considering that an overestimate of a patient’s amount of freezing of gait 
episodes is less harmful than an underestimate. The next best algorithms for the classification of freezing of gait were 
determined to be Random Forest and Support Vector Machine, with Random Forest having higher accuracy and recall. 

The next step is to shift the probability-based decision boundary to below 50% to increase recall at the ex-
pense of specificity for the sake of favoring freezing of gait’s detection. Furthermore, using a similar training meth-
odology, a predictive machine learning model may be able to be built by offsetting the feature and target arrays to 
predict freezing of gait before it occurs. 

 

Conclusion 
 
This study has many insights with regard to detecting freezing of gait in Parkinson’s disease patients with machine 
learning. This study finds that the feature distributions of accelerometer data, EMG, and EEG signals are significantly 
different across patients (p<0.05 for all features between all patients). This means that unless a large representative 
experiment is run to gather the data, models should be made on the personalized level to ensure effectiveness. Fur-
thermore, it was identified that EEG signals provide very little information with regard to detecting freezing of gait. 
Therefore, it is suggested that the data is not used to train models as it adds noise. This study constructed hyperparam-
eter-trained personalized detection models of logistic regression, support vector machine, random forest, and long-
short term memory.  Though LSTM performed the best with regard to the question at hand for the particular patient, 
it is suggested that both LSTM and random forest are compared for other patients since their results are close. A future 
study could build an ensemble of these two models.  

Multimodal Data for the Detection of Freezing of Gait in Parkinson’s Disease, published in October, 2022, 
also built classification models for this data, but in 3-second intervals10.  Using 1/2-second intervals is beneficial 
because it allows for estimating  freezing of gait episode’s duration based on the number of sequential detections, 
given that a typical freezing of gait episode only lasts 1-2 seconds5. A 3-second interval would not be able to distin-
guish between a normal and abnormal freezing of gait episode duration. This study distinguishes itself from previous 
studies by both using short time intervals and rigorously defining the rationale behind the features chosen and the 
models’ applicability. 

 
Limitations 
  
The models trained in this study are personalized for individual patients. Therefore, this study demonstrates that mod-
els can be trained on individual patients with good accuracy. To design models that are generalizable to all Parkinsons’ 
patients, an experiment must be conducted to collect data from a large sample of Parkinsons’ patients from varying 
ages, ethnicities, and disease severities, since those are likely confounding variables. 
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