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ABSTRACT  
 
Pregnancy complications pose a significant threat to maternal health as they may result in a higher risk for issues 
during pregnancy or labor relative to the risk for these issues in a typical pregnancy. Many cases of maternal deaths 
and complicated pregnancies can be avoided with a richer understanding of maternal health early on in pregnancy. 
Genetic analysis of fetal DNA in maternal blood is becoming increasingly common1, and while genetic screening 
efforts have progressed substantially in recent years, they have focused on fetal health rather than the health of the 
mother2. This work focuses on the detection of common complications of pregnancy including preeclampsia, gesta-
tional diabetes, and chronic hypertension using non-invasive circulating cell-free RNA data. We developed interpret-
able supervised machine learning methods that had high performance in identifying pregnancy complications from 
healthy pregnancies (AUC = 0.86). Using our models, we found various relevant transcripts, related to pregnancy 
biology. These included S100A9, which encodes for a protein involved in inflammation and was elevated in compli-
cated pregnancies, as well as two small RNAs involved in cell proliferation and body mass, RNY4 and RNY3, which 
were reduced in preeclampsia and GDM and have previous roles in pregnancy. Our findings highlight several prom-
ising non-invasive biomarkers for the early diagnosis of complications of pregnancy that have the potential to be easily 
integrated into existing clinical workflows.  
 
Introduction  
 
Each year in the United States, 50,000 to 60,000 mothers experience complications from pregnancy and delivery that 
can have severe health impacts. 650 to 750 maternal deaths occur in the United States yearly3. Pregnancy complica-
tions may result in a higher risk for issues during pregnancy or labor relative to the risk for these issues in a typical 
pregnancy. Many cases of maternal deaths and complicated pregnancies can be avoided with a richer understanding 
of maternal health early on in pregnancy3.  

Cell-free DNA (cfDNA) refers to all non-cellular DNA and nucleic acid fragments that enter the bloodstream 
during necrosis or apoptosis. Cell-free DNA molecules were first identified in 1948, and it was subsequently found 
that cfDNA was generally present in higher levels among patients with certain diseases compared to healthy patients4. 
Recent work on cfDNA has shown its potential as a biomarker in the fields of non-invasive cancer detection and 
monitoring, autoimmune disease detection and monitoring, organ transplantation monitoring, prenatal genetic testing, 
and pathogen detection5. Similarly, cell-free RNA (cfRNA) presents an opportunity for non-invasive disease detection 
and monitoring, particularly in the case of overexpression for tissue-specific transcripts.  

Non-invasive prenatal testing (NIPT), a commonly used method of understanding fetal health, uses data from 
a blood draw. While these genetic screening efforts have advanced significantly in recent years, they have focused on 
fetal health rather than maternal health2. Samples used for NIPT can also be used to obtain cfRNA. Since cfRNA has 
been shown to be useful in pregnancy contexts2, samples collected from this commonly performed procedure could 
also be utilized in testing for complications of pregnancy, thereby reducing the number of procedures that pregnant 
women must endure to monitor their health. The collection of this data is non-invasive, as well as more accessible. 
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Several of the most common complications of pregnancy such as gestational diabetes (GDM) and preeclampsia (PE) 
are tested for and diagnosed in the second trimester using current technologies; therefore, our work focuses on early-
stage testing before traditional tests could diagnose these diseases.   

In this study, we aim to identify early-trimester cell-free biomarkers specific to patients with pregnancy com-
plications. We developed computational tools to explore the transcriptomes of healthy patients and patients with com-
plicated pregnancies. Taken together, these results suggest an opportunity to detect these diseases early in pregnancy 
using non-invasive methods.  
 

Results  
 
Data  
  
Our work used high-throughput cell-free RNA-seq data because RNA-seq is a powerful and adaptable technique for 
measuring gene expression at a genome-wide level6. We chose this particular dataset because they take samples from 
patients at each point in pregnancy. This allowed us to observe the changes in expression as a disease progresses, 
along with the fact that the relatively short life of cfRNA is convenient for observing fluctuating expression levels in 
real time. This covered a limitation of many bioinformatics studies that use data from biopsies, which are difficult to 
obtain and static.  

We did not use cord plasma sample data in our models because it was determined to be irrelevant to finding 
biomarkers of pregnancy complications early on in the pregnancy. We also did not include samples from non-pregnant 
women. The original study that produced this dataset used samples from non-pregnant patients as their control case, 
however, we chose not to do so as using non-pregnant samples as a control case is not optimal for building a model 
to distinguish complicated pregnancies from healthy pregnancies. Instead, we chose samples from healthy pregnant 
patients to be the controls (Figure 1). 
 

 
Figure 1. Bar plot of the number of downloaded samples per condition and trimester. 
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Pregnancy complication differential expression   
 
We performed differential expression analysis in edgeR to examine large-scale transcriptomic differences. We began 
by identifying significantly differentially expressed transcripts with a Benjamin-Hochberg adjusted p-value of less 
than or equal to 0.05 (p-value <= 0.05) in each two-way analysis. The expression levels of these transcripts were 
further examined in plots that detailed how expression differentiated between patients with different complications as 
well as the controls. For example, we identified two transcripts with elevated expression during the first trimester in 
patients with chronic hypertension (Figure 2). One encodes for SCARA3, which is expressed due to oxidative stress7, 
and the other encodes for MALSU1, a protein involved in mitochondrial translation and ribosomal large subunit bio-
genesis8. 
 

A 

 

B 

 

Figure 2. Box plots detailing the expression of differentially expressed transcripts in patients with each condition. 
 
Development of biomarker machine learning protocols  
 
After conducting differential expression analysis, we developed predictive machine learning models to take into con-
sideration genome-wide transcriptome changes in pregnancy complications. Furthermore, we examined whether these 
models could prioritize transcripts as early-trimester cell-free biomarkers specific to patients with pregnancy compli-
cations.  

We conducted several two-way analyses between diseased samples and controls, PE and controls, GDM and 
controls, and chronic hypertension and controls. The goal of using multiple different machine learning methods was 
to figure out which model was best suited to recognizing patterns in this particular dataset. Multiple feature selection 
methods were also explored to find the most effective and appropriate dimensionality reduction method for this data. 
For these analyses, we built and evaluated logistic regression models that used only differentially expressed genes as 
input, lasso regression models, binary neural networks that used differentially expressed genes as input as well as L1-
based feature selection, random forest classifier models, and svm models that employed linear kernels. All models 
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created used supervised machine learning and all models employing cross-validation used leave-one-out cross-vali-
dation.  
 
Model performance  
 
Logistic models 
 
We created 12 logistic models in total with the goal of determining a reasonable starting point for more in-depth 
machine learning analyses. Models were evaluated using leave-one cross-validation. The average accuracy was com-
puted for each model (Figure 3). Overall, the average accuracy for each model was between 50% and 85%, suggesting 
relatively poor performance. However, the accuracy was higher, 72% and 85%, for the chronic hypertension samples 
in trimesters 1 and 2, although this category had substantially fewer samples than other conditions.   
 

 
 
Figure 3. Bar plot showing the cross-validated accuracy scores of logistic models created to predict each disease at 
each point in pregnancy. 
 
Neural networks  
 
Neural networks have the ability to recognize more complex, non-linear trends within data and use very different 
methods from that of logistic or lasso regression. We created three binary neural network models in total with the goal 
of determining whether a more complex machine-learning approach to this data would be more proficient. Since neural 
networks generally perform best with many more samples than input variables, we reformulated our problem to focus 
on differentiating complicated pregnancies from healthy pregnancies rather than creating models to predict each indi-
vidual disease. Differential expression and feature selection were used to reduce the dimensionality of the data, as 
neural networks tend to perform better with simpler data.  

To optimize model performance and remove uninformative features, we tested several methods of feature 
selection on the binary neural networks to optimize performance. We created and ran a model using trimester one read 
count data with no feature selection and got an accuracy score of 0.75. After considering the accuracy score and results 
from the confusion matrix, we tried employing various methods of feature selection to improve performance (supple-
mentary Figures S1-S5). We observed that L1-based feature selection and differential expression did not result in 
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overfitting and subsequently combined differential expression with L1-based feature selection (accuracy = 0.86). Fol-
lowing the development of this model, we constructed a binary neural network model that used only second-trimester 
data (accuracy 0.71) as well as a model that used third-trimester data (accuracy 0.71) with the same dimensionality 
reduction techniques. Overall, we found that model performance was best when differential expression and L1-based 
feature selection were applied. We tested further models as well, however, performance was not as successful as with 
lasso and neural networks (see Supplemental Note for more details). 
 
Lasso models 
 
Similarly, to the logistic models, we created 12 lasso models. Lasso regression models were used because the shrink-
age of coefficients allows for built-in feature selection, and it reduces variance and minimizes bias. One of the main 
goals of creating these models was to examine if models could perform more favorably on all the read count data 
rather than just the data from differentially expressed genes. Our other goal in trying lasso models was to develop an 
explainable model that would allow us to understand and investigate the coefficients that were being chosen.  

We found that lasso models had low AUC when differential expression was used (Figure 4), so we decided 
to build lasso models that did not utilize this technique. We found that lasso models had high cross-validated accuracy 
without using differential expression (Figure 5). The accuracy ranged from 46% to 83.33%, with the highest-perform-
ing model predicting all pregnancy complications during the first trimester. We noted that performance was worst for 
models that predicted GDM and chronic hypertension, likely because these were the cases with the least number of 
samples. Models that predicted PE or all pregnancy complications performed the best, most likely due to the dataset 
including more samples that fit these cases. 

We observed that model accuracy tended to decline over each trimester, likely because many genes tend to 
increase in expression over the course of pregnancy9 regardless of pregnancy complications or disease. However, this 
indicates that our models may be well suited to identifying early-stage complications. 
 
Biomarker characterization  
 
Differentially expressed genes were investigated using Gene Ontology Enrichment Analysis10, however, no significant 
results were identified by the algorithm. Given that the lasso models performed well and lasso model coefficients 
indicating the importance of a transcript in making a disease prediction can be retrieved, we studied the genes with 
large coefficients. Interestingly, there was a high number of overlaps between the transcripts identified as important 
for each condition (number of overlapping transcripts = 186). However, to identify potential early-stage disease-spe-
cific biomarkers, we focused on the trimester 1 model in which the two categories were healthy patients or patients 
with pregnancy complications.  
For each important transcript, we looked at GTEx tissue-specific expression (dbGaP accession number 
phs000424.vN.pN on 02/25/2023) to identify which tissues these genes were related to, and performed a literature 
search on how these transcripts may be related to pregnancy, pregnancy complications, or adverse pregnancy outcomes 
(supplementary Table S1). A few key transcripts supported by relevant research are displayed in Table 1. These in-
clude S100A9 which was elevated in PE and GDM pregnancies (Figure 6), as well as FHDC1 which was elevated in 
patients with chronic hypertension (Figure 6), and two small RNAs involved in cell proliferation and body mass. 
S100A9 is highly expressed in the cervix, esophagus mucosa, and vagina and is associated with cervical cancer11, 
early pregnancy loss12, and is strongly related to inflammation13 which is a common symptom in PE. FHDC1 is highly 
expressed in the thyroid and is associated with GDM and preterm birth14, as well as hyperthyroidism15 which can lead 
to high blood pressure, poor fetal growth, and premature delivery. RNY4 and RNY3, which were reduced in PE and 
GDM (Figure 6) and have previous roles in pregnancy. 
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Figure 4. AUC plots for each trimester model for preeclampsia using differential expression. 
 
 

 
 
Figure 5. Cross-validated accuracy scores for each lasso model created.  
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Figure 6. First-trimester expression box plots for a few key transcripts of interest. 
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Table 1. Selected lasso genes and their roles in pregnancy complications. 
 

Biomarker 
candidate 

GTEx expression Role 

FHDC1 Increased in thyroid Associated with GDM, preterm birth14 & hyperthyroidism15 

which can lead high blood pressure, poor fetal growth, and 
premature delivery 

S100A9 Increased in the cervix, esopha-
gus mucosa, vagina 

Associated with cervical cancer11, early pregnancy loss12, 
strongly associated with inflammation13 

RPL8 Increased in ovary Regulates iron metabolism16, associated with T2D17 

MTRNR2L12  Differentially expressed in PE18, associated with maternal 
obesity and T2D19, 20 

RPS18 Increased in ovary Associated with PE21, 22 

EEF1A1 Inceased in spleen, ovary Differentially expressed in PE23, elevated in GDM and PE 
placentas24, related to inflammation25  

 

Discussion 
 
Pregnancy complications pose a significant threat to maternal health, but many cases of complicated pregnancies can 
be avoided with a richer understanding of maternal health early on in pregnancy. In this work, we focus on identifying 
pregnancy complications in early-trimester pregnancies, using non-invasive circulating cell-free RNA data. We de-
veloped an interpretable supervised lasso model that had high performance in identifying pregnancy complications 
from healthy pregnancies (AUC = 0.86). We conducted further research on the lasso model coefficients to gain a 
deeper understanding of the transcripts these models identified to be relevant in classifying complicated pregnancies. 
Our findings highlight several promising biomarkers for the early detection of pregnancy complications. 

The design of our study was devised with the goal of avoiding introducing bias in our work to the best of our 
ability. We chose not to use samples from non-pregnant women as our controls because the goal of our models was 
to distinguish healthy pregnancies from complicated pregnancies and not to determine the differences between the 
transcriptome of a pregnant patient and a non-pregnant patient. Using samples from non-pregnant patients as the 
control samples were likely to introduce bias to the models created in the original experiment. We also chose not to 
use cord blood data because it was determined to not be as relevant to detecting early-trimester biomarkers. We fo-
cused on early-trimester biomarker detection because common pregnancy complications like PE and GDM are diag-
nosed during the second trimester using current technologies.  The use of cfRNA in this work is also important to note 
because the process of cfRNA collection is non-invasive. The relatively short life of cfRNA also allowed the obser-
vation of fluctuating expression levels in real-time, as opposed to static data from biopsies. We used a non-biased, 
interpretable ML model, which provided valuable insight into which transcripts were relevant to classifying a sample 
as healthy or complicated. This allowed us to identify biomarkers for complicated pregnancies as opposed to just 
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determining if machine learning techniques would be able to predict complications of pregnancy. Biomarker identifi-
cation will be important for possible clinical applications of this work.  

Though the study that produced this dataset claims that they collected samples from a diverse group of 
women, they did not list any details about their patients regarding age or ancestral background. This prevented us from 
further examining trends in the data that may have been influenced by age or ethnicity. Understanding the correlation 
between pregnancy complications and maternal age would have been a particularly important factor to examine be-
cause of the known link between the two26. Because older women are particularly at risk for pregnancy complications, 
it would be worthwhile to see if certain potential biomarkers are more specific to older women and, if so, study their 
ontology.  

One of the largest limiting factors of this work was the small sample size. Samples from less than 30 women 
were used, which was an issue because it likely hindered the learning ability of the machine learning models. It is 
generally known that too little training data can result in a poor approximation and may cause the model to overfit. In 
the future, to validate our candidate biomarkers, a larger sample size could be used to improve model training. We 
could also do this by exploring a whole genome bisulfite sequencing dataset produced from the same experiment. This 
would involve creating several models and optimizing them for this dataset, then validating previously found potential 
biomarkers and exploring newly identified transcripts of interest. Because our work focuses on biomarker identifica-
tion, this information can be used in a clinical setting using targeted sequencing methods or qPCR tests. Both of these 
methods are cheaper and more readily available than whole-genome sequencing, a commonly used method in similar 
bioinformatics studies.  

In this work, we focused on identifying pregnancy complications in early-trimester pregnancies using non-
invasive circulating cell-free RNA data. We developed an interpretable supervised lasso model that had high perfor-
mance in identifying pregnancy complications from healthy pregnancies (AUC = 0.86). Our findings highlight several 
promising biomarkers for the early detection of pregnancy complications. This work will be important in medicine 
for monitoring maternal health in a comfortable, convenient way as well as detecting pregnancy complications before 
they become serious. 
 

Methods  
 
RNA-seq data 
 
The dataset selected for analysis in the present study is publicly available from the Gene Expression Omnibus27 under 
the accession number GSE154377. The original study that produced this dataset performed RNA sequencing from 
healthy pregnant patients, non-pregnant patients, and pregnant patients with certain pregnancy complications. The 
complications studied included GDM, preeclampsia (also referred to as gestational hypertension), and chronic hyper-
tension. The original study defined GDM as any degree of glucose intolerance with an initial recognition during preg-
nancy. They defined preeclampsia as new-onset hypertension with new onset of thrombocytopenia, renal insuffi-
ciency, impaired liver function, pulmonary edema, and cerebral or visual symptoms while chronic hypertension was 
defined as blood pressure (BP) of 140/90 mm Hg or higher, that either predates pregnancy or develops before 20 
weeks of gestation. 

The study collected blood samples from nine patients with healthy pregnancies, seven with GDM, eight with 
preeclampsia, and two with chronic hypertension. It also examined a group of seven control samples from non-preg-
nant women, resulting in a total of 134 samples collected. A total of 127 samples, including only pregnant patients, 
were downloaded from the dataset. This included samples from each trimester and cord plasma samples, though the 
latter was not used as input for our machine-learning models. We directly downloaded the samples as TXT files and 
stored them using iCloud Drive, a cloud service developed by Apple. 
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The read counts in each TXT file were compiled into three separate data frames in python28 using pandas (v1.4.4). 
Each trimester of pregnancy corresponded with one data frame that contained the read counts of each sample that was 
collected during the said trimester. Each data frame consisted of integer read count data sorted into columns that 
represented patient IDs and rows that represented a total of 57,736 transcripts. These were then downloaded as TXT 
files. 
 
Differential expression analysis 
 
Differential expression (DE) analysis was conducted in R (v4.2.2) using edgeR (v3.40.2)29, a package that specializes 
in detecting relative changes in expression levels between conditions, and limma (v3.54.0)30, a package originally 
developed for RNA-sequencing and DE analysis of microarray data. We conducted nine separate two-way analyses 
between all the different two-way combinations of the four conditions during each trimester: GDM and healthy preg-
nancy, preeclampsia and healthy pregnancy, and chronic hypertension and healthy pregnancy. To prepare a DGEList 
for analysis in edgeR, each manually-created TXT file with read count data frames was loaded into R and the data 
was stored in three separate DGELists in which the counts were a table of integer read counts and groups corresponded 
to one of the four mentioned conditions. The data in each trimester was then filtered by counts per million (CPM), so 
genes were only kept if their CPM was in the top 10% of the CPMs of all listed genes. The data was subsequently 
normalized and the dispersion was estimated. We then tested for differential expression by conducting tagwise tests 
and using Benjamini and Hochberg's algorithm31 to control the false discovery rate (FDR). Results were visualized 
through volcano plots using the plotSmear function in R. Finally, We generated TXT files of each two-way analysis 
using estimated count values. 
 
Gene ontology 
 
Differentially expressed genes were investigated using Gene Ontology Enrichment Analysis10. 
 
Machine learning models 
 
Model formulation  
 
The models created were either binary or multiclass classifiers. Multiclass models involved data from all samples, 
while each binary model involved only two cases. An alternative model was used where the case was any disease state 
while the control was healthy pregnancies. Complicated pregnancy samples were characterized by the patient having 
one of the three diseases discussed; GDM, preeclampsia, and chronic hypertension. In other binary models, the two 
cases used were healthy pregnancy samples and a specific disease. These models evaluated whether a sample was 
from a pregnant patient who was healthy or a pregnant patient with a disease. Each model created used read count 
data from only one trimester to avoid the interference of transcriptional noise.  
 
Machine learning algorithms 
 
All machine-learning analyses were conducted in Python with the pandas and sklearn packages. To test our hypothesis, 
we created a variety of models that used different methods of data filtering and feature selection. We created nine 
binary logistic regression models to predict whether a patient had a specific pregnancy complication or was healthy. 
Three models were created with data from each trimester, and each model only considered genes that were found to 
be differentially expressed.  
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Similarly, we created 9 binary lasso regression models to predict whether a patient had a specific pregnancy 
complication or was healthy. Each lasso model had a test size of 0.25. We also created three additional binary lasso 
regression models that evaluated whether a patient was healthy or had any of the three pregnancy complications. Lasso 
regression models did not use any additional methods of feature selection. 

We created three binary random forest classifier models and three binary SVM models that evaluated whether 
a patient was healthy or had any of the three pregnancy complications. The first, second, and third-trimester random 
forest classifiers had a max depth of five, eight, and eight respectively as well as a min sample split of two. Our SVM 
models used linear kernels. None of these models used any additional methods of feature selection. We built three 
binary neural network algorithms (Table 2, Table 3, Table 4) that functioned similarly to the random forest and SVM 
models. Each binary neural network worked with the differentially expressed genes from that trimester and used L1-
based feature selection.  
 
Table 2. Binary neural network architecture used for Trimester 1. 

Layer Node size Activation function Param # 

Layer 1 8 relu 120 

Layer 1 8 relu 72 

Output 1 sigmoid 9 

 
 
Table 3. Binary neural network architecture used for Trimester 2. 

Layer Node size Activation function Param # 

Layer 1 8 relu 240 

Layer 1 8 relu 72 

Output 1 sigmoid 9 

 
 
Table 4. Binary neural network architecture used for Trimester 3. 

Layer Node size Activation function Param # 

Layer 1 8 relu 176 

Layer 1 8 relu 72 

Output 1 sigmoid 9 

 
Evaluating the models 
 
Binary models were evaluated with accuracy scores, cross-validation, and area under the curve (AUC) scores. AUC 
curve plots as well as confusion matrix plots were generated to gain a better understanding of how well each algorithm 
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was doing. Our multiclass neural networks were evaluated using accuracy scores as well as confusion matrix plots 
and model accuracy and loss plots. Confusion matrices were plotted using the heatmap function from seaborn32.  
 
Feature selection and optimization 
 
We used differentially expressed genes and L1-based feature selection to simplify the input for each binary neural 
network. As the trimester one model was the first one to be built, we first ran this model with no adjustments to the 
input. We then tried tree-based feature selection, univariate feature selection, L1-based feature selection, and differ-
entially expressed genes to simplify the input. L1-based feature selection and differentially expressed genes allowed 
the model to perform the best. When the two methods were combined, the model performed better than when these 
methods of feature selection were applied individually. We ran the trimester two and three models for the first time 
with no adjustments to the basic model structure. We then ran them using L1-based feature selection and differentially 
expressed genes and found that they both performed better. We used accuracy scores and observed model loss plots 
to determine how well the model was doing.  
 
Feature importance 
 
We conducted further research on the lasso regression coefficients that were weighted to be greater than zero. To do 
this, we researched each gene found by the lasso models that classified whether a pregnancy was complicated or not 
(i. e. the two cases were healthy or diseased). We also used the GTEx Portal (dbGaP accession number 
phs000424.vN.pN on 02/24/23) to examine what tissues these genes were largely expressed in and what roles these 
tissues have in adverse pregnancy outcomes. 
 

Supplementary Materials 
 
Supplementary note 
 
We created three random forest classifier models in total; one from each trimester with each one using the cases of 
complicated pregnancy (PE, GDM, and chronic hypertension samples) and normal pregnancy. Random forest classi-
fiers were chosen because of their ability to handle large datasets efficiently. They were not combined with any form 
of feature selection because these models have built-in feature importance methods. We also built three svm models; 
one from each trimester with each one using the cases of complicated pregnancy (PE, GDM, and chronic hypertension 
samples) and normal pregnancy. svm models were chosen because they are known to be effective in cases where the 
dimensions are greater than the number of samples, which applies to the data we used. The goal of creating random 
forest and svm models was to determine if a different machine-learning approach to this data would be more proficient.  
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