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ABSTRACT 
 
Alzheimer's Disease (AD) affects approximately 50 million individuals worldwide and is estimated to rise to 
152 million by 2050. There is currently no treatment for AD that halts the progression from cognitively normal 
(CN) and/or mild cognitive impairment (MCI) to AD. The ability to predict disease progression will allow for 
early treatment. While Machine Learning (ML) has been successful in diagnosing the cognitive state, further 
improvement is necessary for predicting progression. In this study, Random Forest and Bagging Decision Tree 
Recursive Feature Elimination (RFE) was utilized to ascertain the cognitive state and forecast progression. 
Clinical diagnoses, demographics, and post-processed PET and MRI scans used in this study were obtained 
from the Open Access Series of Imaging Studies (OASIS). The findings suggest that aging and lower levels of 
education are associated with higher risk. The study found that ML using post-processed MRI and PET scans, 
particularly RFE ML, is effective in diagnosing cognitive states with 90% accuracy. It can predict progression 
from CN to MCI or AD with 85% accuracy, which is significantly higher than the average reported in literature. 
Patients with progression from CN to AD were distinguished by elevated amyloid deposition, hippocampus and 
amygdala atrophy, left accumbens atrophy, thinning of the left hemisphere temporal, and enlarged inferior lat-
eral ventricles. The study demonstrated that RFE ML is effective in diagnosing and predicting the progression 
of AD. Future studies will concentrate on identifying the specific regions of amyloid plaque that have the most 
significant impact on cognitive state and progression. 
 

Introduction 
 
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a gradual and progressive 
deterioration of the nervous system. There are around 50 million AD patients worldwide and this number is 
projected to double every 5 years. By 2050, there will be 152 million patients globally [1] [2]. Individuals with 
AD experience a decline in cognitive function, which is characterized by symptoms such as memory loss, dif-
ficulty concentrating and thinking, and impaired reasoning and decision-making abilities. Unfortunately, there 
is currently no cure for AD, and the FDA has not approved any medications for treating AD that have been 
demonstrated to delay or prevent its progression [3]. One of the main reasons that finding treatment for AD is 
challenging is because AD cannot be easily identified at early stages of development [4] [5]. 

AD is characterized by neuritic plaques and neurofibrillary tangles [6]. To diagnose AD, several tests 
need to be performed, including neurological examination, Magnetic Resonance Imaging (MRI) for neurons, 
laboratory examinations, and analysis of medical and family history. Recently, amyloid Positron Emission To-
mography (PET) imaging uses agents to bind to insoluble fibrillar forms of Aβ 40 and Aβ 42 deposits, a major 
component of compact neuritic plaques and vascular deposits, has been utilized extensively to characterize the 
deposition of amyloid plaque [7]. A probable diagnosis of AD can be established with a confidence of > 90% 
by the methods mentioned above [6]. However, a method to predict progression from cognitively normal (CN) 
to mild cognitive impairment (MCI) or then to AD is still not available. 
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The increase in processing power of Graphics Processing Units (GPUs) has enabled the development 
of cutting-edge deep learning algorithms, which have been applied to the diagnosis of AD patients with great 
success in recent years [8]. Machine learning studies have reported average accuracies of 92%, 83%, 80%, and 
79% for distinguishing between CN and AD, MCI and AD, CN and MCI, and multi-class (CN, MCI, AD) 
groups, respectively [8] [9] [10] [11]. While some studies have focused on using machine learning to predict 
progression to AD, the majority have concentrated on forecasting progression from MCI to AD, with an accu-
racy of 76% [8]. Few or no studies have attempted to predict the progression from CN to AD. Therefore, further 
research is needed to improve the accuracy of predicting progression from MCI to AD, or from CN to MCI or 
AD. In a study by Albright [12], neural network machine learning was utilized to predict the progression from 
MCI or CN to AD with an accuracy of 86.6%. The study incorporated the 13-item Alzheimer’s Disease As-
sessment Scale and several verbal learning tests as primary features for prediction, with ventricular volume 
serving as the sole biomarker. It provided an effective method for predicting the progression, but it was focused 
mainly on the outcome with minimal information on the underlying physiological mechanisms that led to the 
behavioral differences. The application of machine learning to AD biomarkers can enhance our understanding 
of changes in brain structure and physiology, facilitating early treatment as well as providing a foundation for 
doctors and researchers to develop effective medicines or therapies for early intervention. 

This study uses Recursive Feature Elimination (RFE) machine learning to identify the biomarkers that 
can be used to diagnose the cognitive state (CN, MCI and AD) and forecast the progression from CN to AD. 
RFE machine learning is effective at selecting features in a training dataset that are the most relevant in pre-
dicting the target variable [13]. It is hypothesized that machine learning can be applied to MRI and PET scans 
of the brain to determine cognitive state and assess the risk of progression from CN to AD. 
 

Method 
 
This study utilized brain volume and thickness measurements of various brain regions based on MRI images, 
along with global amyloid burden data based on amyloid PET imaging, obtained from the Open Access Series 
of Imaging Studies (OASIS-3) to train Random Forest and Bagging Decision Tree (RFE) machine learning 
models. The overview of the method is demonstrated in Figure 1, including three steps: pre-processing, mod-
eling and testing. Through pre-processing, the relevant OASIS-3 data was imported and subjected to dimension 
reduction to eliminate strongly correlated features and reduce the risk of overfitting. All the data was then 
merged, cleaned, and partitioned to prepare the data for modeling, which would identify the important features 
and predict the diagnosis of the training set. Finally, the model was tested by applying it to the test set for 
accuracy. 
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Figure 1. Overview of the method. 
 
About Open Access Series of Imaging Studies (OASIS) 
 
OASIS-3 
 
All the data was obtained from OASIS by the Washington University Knight Alzheimer Disease Research 
Center over the course of 15 years. There are five independent datasets in OASIS websites. The data used in 
this study was OASIS-3 data, which is longitudinal and includes 2842 MR sessions, 2157 PET sessions, and 
1472 CT sessions from 1379 participants. The participants include 755 cognitively normal adults and 622 indi-
viduals at different stages of cognitive decline, ranging in age from 42 to 95 years. For more detailed statistics 
of OASIS-3, please refer to the literature [14]. The OASIS-3 data is hosted on XNAT Central (https://cen-
tral.xnat.org), a publicly accessible data-repository. 
 
MRI Images and FreeSurfer Post-Processing 
 
In the OASIS-3 dataset, MR images were post-processed by cortical reconstruction and volumetric segmenta-
tion of T1-weighted images using the FreeSurfer image analysis suite, which is documented and freely available 
for download online (http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are de-
scribed in previous publications [15] [16] [17]. Data included in OASIS-3 was processed using an XNAT pipe-
line for the FreeSurfer image analysis suite using Dell PowerEdge 1950 servers with Intel Xeon processors 
running CentOS 5.5 Linux [14]. 
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PET Scan, PUP Post-Processing, and Centiloid Standardization 
 
Participants underwent Positron Emission Tomography (PET) on one of three different Siemens scanners: 
ECAT HRplus 962 PET scanner, Biograph 40 PET/CT scanner, and Biograph mMR PET-MR. Pittsburgh Com-
pound B ([11C]PIB or PIB) and Florbetapir [18F] (18F-AV-45 or AV45), were used to investigate β-amyloid (Aβ) 
deposits in the brain. PET imaging analyses were performed using the PET unified pipeline (PUP) 
(https://github.com/ysu001/PUP) via XNAT [18] [19]. More details about post-processing of PET images, in-
cluding PET to MR registration is summarized in OASIS-3 literature [14]. The Centiloid scale was developed 
to standardize the quantification of amyloid by converting amyloid PET data to a 0-100 scale [20]. The Centiloid 
scale has been used to calibrate both PIB and Florbetapir imaging, with equations presented in literature [21].  
 
Data Cleaning and Exploration  
 
Based on the goal of the study, four datasets from OASIS-3 were used: 

● Demographics: this file includes patients’ basic information including patient ID, Age at Entry, Gen-
der, Years of Education, and preferred used hand (handedness). These were explored to understand 
the correlation between the cognitive state and patient demographics information.  

● Clinician Diagnosis of Cognitive Status and Dementia: the data includes patients' age and the clinical 
diagnosis results at different visits. One patient may have multiple visits. The first entry was recorded 
to be Day 0, and the dates for the remaining visits were recorded to be the number of the days from 
the first visit. The dataset includes detailed information about the cognitive state of the patient at each 
visit with options including Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and De-
mentia (DMN). For those who had dementia, types of dementia were further categorized. To simplify 
the analyses, assuming all the types of dementia were categorized to be Alzheimer’s Disease (AD).  

● Global Amyloid Burden: this file includes the mean cortical binding potential (BP) or mean cortical 
standard uptake ratio (SUVR) that was calculated from the arithmetic mean of BP or SUVRs of four 
critical regions from PET scans with and without partial volume correlations: precuneus (PREC), pre-
frontal cortex (PREF), gyrus rectus (GR), and bilateral temporal (TEMP) [14] [19]. Pearson Correla-
tion Coefficients were calculated among these four variables, and only the variables that had moderate 
or weak correlations (≤ 0.59) were kept for Machine Learning analyses [22]. As a result, mean cortical 
SUVR was kept to be merged with the FreeSurfer output for Machine Learning analyses.  

● FreeSurfer: the file includes the volume and thickness of various portions in the brain calculated by 
FreeSurfer from post-processing of MRI images of the patients. For more details on the post-pro-
cessing, please refer to the FreeSurfer Wiki (https://surfer.nmr.mgh.harvard.edu/) and relevant publi-
cations [15] [16] [17] [14] [23]. Similar to Amyloid Burden analyses, only the variables with moderate 
or weak correlations were kept for Machine Learning analyses.  

 
General Statistics about the patients and visits were calculated. Paired t-tests were performed to iden-

tify potential significant differences in age, years of education, amyloid centiloid, and total brain volume among 
three groups (CN, MCI and AD).  
 
Data Merging 
 
The patient ID and the visit time were used to map the patients. The patients’ IDs are in the format of 
“OAS3xxxx”, in which “xxxx” represents a 4-digit number. The time of visit was in the format of the number 
of days from the first visit. To account for variations in the timing of doctor visits and PET/MRI scans, the visit 
time was rounded to the nearest year from the first visit, allowing for better mapping of the visits. After that, 
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the files were merged by patient ID and the year of visit. To prepare for machine learning, missing data were 
removed from the merged data. 
 
Machine Learning 
 
Overview 
 
Random Forest and Bagging Decision Tree of Recursive Feature Elimination (RFE) Machine learning was 
performed on the merged data from the Clinical diagnoses, Amyloid Centiloid and FreeSurfer values. RFE has 
the advantage of mitigating overfitting, especially on features with large dimensions. To avoid the exclusion of 
important features, the Recursive Feature Elimination (RFE) was conducted with a range of feature numbers 
including 1-20, 30, 40, 50, 60, 80, and the complete set of all features. 

Two types of Machine Learning models were executed: 
● Diagnosis ML: used Centiloid measurements from PET scans and FreeSurfer measurements from MRI 

scans to predict the diagnosis. This will enable machine learning based guidance for diagnosis.  
● Progression ML: used Centiloid measurements from PET scans and FreeSurfer measurements from 

MRI scans to predict the progression from CN to MCI or AD.  
 

For all the machine learning models, the data was divided into a training set (80%) and a test set (20%). 
The accuracy of the model was evaluated by means of comparison between the prediction and the real results 
(1 if it is the same and 0 if it is not). Important features for all the RFE models were identified. The most 
important features were defined to be the features that were identified from all RFE models. The top ten im-
portant features determined by each model were summarized and compared.   
 
Diagnosis ML 
 
The purpose of this machine learning model is to use the Mean Cortical Amyloid Centiloid calculated from 
PET scans as well as the brain volume and thickness calculated from MRI scans to predict the cognitive state. 
The output of the model is a categorical result of one of the following groups: Cognitive Normal (CN), Mild 
Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). For Diagnosis ML, each visit that has clinical 
diagnosis information, and a PET and MRI scan, is counted as one data point.  
 
Progression ML 
 
The purpose of this machine learning model is to use the Mean Cortical Amyloid Centiloid calculated from 
PET scans as well as the brain volume and thickness calculated from MRI scans to predict if a patient is going 
to progress from CN to MCI or AD. A new factor variable (Progression Status) was assigned to each patient 
according to the patients’ clinical history: CN at Day 0 with no progression later (CN), AD at Day 0 (AD), and 
progression from CN (at Day 0) to MCI or AD (PROG). The output of the prediction is a categorical result of 
one of those three groups.  

To simplify the analyses, it was assumed that once a patient progresses from CN to MCI or AD, it does 
not reverse. If the raw data shows reversal, it would be interpreted as a mistake and the data would be corrected 
so that no patients have a reverse change from a cognitive worse status to a better status. For example, if the 
raw data showed a patient has CN, then MCI then back to CN, the patient’s Progression Status is assigned to 
PROG.  
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As the progression was usually diagnosed at one of the follow-up visits, it is unclear which point is a 
good time for the machine learning model to predict the progression. Therefore, two experiments were per-
formed: 

● Experiment 1: used the PET and MRI scans at Day 0 for all the patients as the input for the machine 
learning model. The advantage of this approach is that if the Day 0 data gives an accurate prediction, 
it allows for diagnosis much sooner instead of waiting for more scans while the disease gets worse. 
The disadvantage is that each patient had only one data point as the data for the rest of visits were not 
used; therefore, the size of the data is reduced. There is also a risk that the Day 0 data may not be 
significant enough yet to show the signs of the progression.  

● Experiment 2: used the PET and MRI scans of all visits of each patient for machine learning. For 
patients with stable CN or AD, all visits of the same patient are assigned to the same status, with CN 
or AD. For the patients that had PROG, only visits that have CN were included and assigned to PROG. 
The advantage of doing this is the dataset would have much bigger size than that of Experiment 1.  

 

Results 
 
Basic Patients Stats and Demographics 
 
After the data was cleaned, there were 1336 participants in the OASIS-3 dataset, with 941 and 1316 patients 
receiving PET and MRI scans, respectively. There were 894 patients in total that had clinical diagnoses, PET 
scans and MRI scans in the merged file excluding the data that was removed. The detailed patient information 
and associated number of visits were summarized in Table 1. 
 
Table 1. Basic Patient Information. 
 

Variables All CN MCI AD 
Number of Visits 7653 5799 1369 485 
Male 0.449 0.699 0.081 0.22 
Female 0.551 0.806 0.049 0.145 
Age (Years) 74.6 +/- 8.3 73.5 +/- 8.1 77.3 +/- 7.7 78.6 +/- 7.9 
Education (Years) 15.8 +/- 2.6 16.0 +/- 2.5 15.6 +/- 2.7 15.2 +/- 3.0 
Left-Handed  0.096 0.784 0.058 0.158 
Right-Handed 0.904 0.758 0.064 0.178 
Duration of Follow Up (Years) 3.8 +/- 4.5 4 +/- 4.5 4.2  +/-  5.2 2.1 +/- 3.6 
Number of PET  1585 1358 70 157 
Number of MRI 2164 1742 127 295 

 
The t-test results for age and years of Education among groups of CN, MCI and AD are shown in 

Table 2. 
 
Table 2. The p values of the t-tests. 
 
Variables CN and MCI CN and AD MCI and AD 
Age  2.2E-16 2.2E-16 1.6E-03 
Education  8.6E-04 2.2E-16 3.7E-03 
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The following observations were made: 
In the participants of OASIS-3, females had fewer MCI and AD than that of male patients 
The t-test showed significant differences in age and years of education of the patients with cognitive 

state of CN, MCI and AD, suggesting that the risk of cognitive impairment increases with aging and decreases 
with more years of education.  

No relationship was found between the handedness and cognitive state.  
 
Correlation Among Variables 
 
Correlations among all the variables for Centiloid and FreeSurfer files were determined for dimension reduc-
tion. For the amyloid centiloid, the mean cortical binding potential (BP) or mean cortical standard uptake ratio 
(SUVR), all showed high correlation with each other (Figure 2). Therefore, only one amyloid centiloid, 
fSURV_rsf was used for machine learning. There were originally 203 variables in the FreeSurfer file that in-
cluded the volume and thickness. After removing the variables that have strong correlations, 85 features were 
kept. 
 

 
 
Figure 2. Correlation among mean total cortical amyloid centiloids, where fBP: FreeSurfer calculated Binding 
Potential; fBP_rsf: FreeSurfer calculated, partial volume corrected Binding Potential; fSUVR: FreeSurfer cal-
culated SUVR; and fSUVR_rsf: FreeSurfer calculated, partial volume corrected SUVR, the gold standard [24].  
 
Progression Statistics 
 
The time taken to progress is demonstrated in Figure 3. As shown, there is no significant difference between 
the time it takes to progress from CN to MCI and the time it takes to progress from CN to AD. Significant 
differences existed between progression types of CN to AD and MCI to AD, and between CN to MCI and MCI 
to AD.  
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Figure 3. The boxplot showing the time takes to progress (Years), where “n.s” : not significant; CN�AD: Pro-
gression from CN to AD; CN�MCI: Progression from CN to MCI; and MCI�AD: Progression from MCI to 
AD. 
 
Diagnosis RFE Machine Learning 
 
The accuracy of Random Forest and Bagging Decision Tree vs number of features was shown in Figure 4, 
indicating that: 

Using 17 and 18 variables yielded the best predictions for Ransom Forest and Bagging Decision Tree, 
respectively. Both observations suggested that using all 85 variables would result in overfitting. 

For both methods, using the first 5 -10 variables could lead to an accuracy close to the most accurate ones. 
For both methods, using one variable could achieve around 84.5% accuracy. Adding a second variable 

and/or third one significantly improved the accuracy.  
Both methods resulted in about the same average accuracy for the training set. 
Random Forest yielded a slightly higher prediction accuracy than Bagging Decision Tree did.  

 

 
 
Figure 4. RFE Machine Learning accuracy using Random Forest and Bagging Decision Tree for diagnosing 
the cognitive state. The curve shows the accuracy of the prediction as a function of the number of variables. 
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The larger green marker on each curve indicates the best accuracy for each method. The table in the figure 
shows the comparison of the average accuracy and test accuracy between Random Forest and Bagging Decision 
Tree method.  

The important features identified by both methods is shown in Figure 5, suggesting that the mean total 
cortical Amyloid Centiloid is the most important feature in predicting cognitive status. The volumes of Total 
Hippocampus left Amygdala, right Amygdala, left Accumbens Area, and Right Inferior Lateral Ventricle as 
well as the thicknesses of Left Hemispherical middle and inferior Temporal are among the top ten important 
features. 
 

 
 
Figure 5. The top 10 important features identified by RFE of Random Forest and Bagging Decision Tree meth-
ods for diagnosing the cognitive state. 
 

To confirm the important features are different among different cognitive states, boxplots of Right 
Inferior Lateral Ventricle Volume and Right Amygdala Volume of CN, MCI and AD groups were plotted and 
shown in Figure 6. MCI and AD are associated with increased volume of Right Inferior Lateral Ventricle Vol-
ume and decreased volume of Right Amygdala. The t-tests showed there are significant differences among all 
three groups with 𝑝𝑝 < 0.05.  
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Figure 6. Boxplots of volume of Right Inferior Lateral Ventricle and Right Amygdala. 
 
Machine Learning to Forecast Progression 
 
The RFE results with Random Forest and Bagging Decision Tree results for progression from CN to MCI or 
AD are shown in Figure 7, which demonstrates that using the data from all visits resulted in a better accuracy 
than using the data from Day 0 only. It is also observed that it takes more features to get the best prediction 
using just Day 0 data, as expected. There was no significant difference between Random Forest and Bagging 
Decision Tree method, although Random Forest gave a slightly higher accuracy.   
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Figure 7. Results of RFE Machine Learning for progression from CN to AD. “_All Visits” means using the 
data from all visits of the patients; “Day 0” means only the data from the first day of visit is used. The larger 
green marker in each curve indicated the best accuracy for each method. 
 

The important features identified by all the methods are quite similar, especially the top 5 ones, as 
shown in Figure 8, which again suggested a very similar pattern to what is seen in diagnosis prediction. In order 
to verify whether the crucial features for disease progression differed across the CN, AD, and PROG groups, 
boxplots were generated for the Mean Cortical Amyloid Centiloid and Volume of Hippocampus, as shown in 
Figure 9. Compared to the CN group with no progression, the group with progression (PROG) shows a reduced 
volume of Hippocampus and increased Mean Cortical Amyloid Centiloid. As expected, the AD group showed 
the highest amyloid deposition and the smallest volume of Hippocampus. The t-tests showed there were signif-
icant differences among all three groups with 𝑝𝑝 < 0.05. Table 3 presents a detailed comparison between CN 
and PROG, along with the corresponding t-test results. 
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Figure 8. Top 10 important features identified by RFE machine learning to predict the progression from CN to 
MCI or AD. 
 
Summarized Important Features 
 
Among all the 85 features, the following features have been shown to be top features by all 6 models: Mean 
total cortical Amyloid Centiloid, Volume of total Hippocampus, Volume of Left Amygdala, Volume of Right 
Amygdala, Volume of Left Accumbens Area, Volume of Right Inferior Lateral Ventricle, Thicknesses of Left 
Hemispherical Middle Temporal, and Thicknesses of Left Hemispherical Superior Temporal. 

The following two variables have been suggested by 5 models: Thicknesses of Left Hemispherical 
Inferior Temporal and Volume of Subcortical gray Matter. 
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Figure 9. Differences in Total Hippocampus volume and Amyloid Centiloid amount. “CN”, “AD” and “PROG” 
represent the patient group that stays on CN, AD and progresses from CN to AD.  
 
Table 3. CN that does not progress to AD vs CN that progresses to AD. The unit for volume and thickness is 
𝑚𝑚𝑚𝑚3 and 𝑚𝑚𝑚𝑚, respectively. The * suggests no significant difference with 𝑝𝑝 < 0.05. 

Variables CN Prog p value 

Mean Cortical Amyloid Centiloid 13.42 36.86 1.97E-15 

Left Accumbens Area Volume 510.40 452.85 2.22E-13 

Left Amygdala Volume 1493.96 1377.98 2.32E-12 

Left Hemisphere Middle Temporal Thickness 2.72 2.67 7.92E-08 

Left Hemisphere Superior Temporal Thickness 2.61 2.54 1.03E-11 

Right Amygdala Volume 1561.05 1481.45 2.60E-06 

Right Inferior Lateral Ventricles Volume 443.35 736.41 1.76E-15 

Total Hippocampal Volume 7732.71 7101.62 2.20E-16 

Right Hemisphere Inferior Temporal Thickness 2.73 2.69 2.77E-04 

SubCortical Gray Volume  54023.31 55116.13 0.4456* 

 

Discussion 
 
In this study, Random Forest and Bagging Decision Tree RFE was used to (1) diagnose the cognitive state, i.e., 
CN, MCI, and AD; (2) forecast the progression from CN to MCI or AD. The results from RFE Machine Learn-
ing were effective in diagnosis and predicting progression with an accuracy of about 89.8% and 85.9% (Figure 
4 and Figure 7), respectively. This is significantly better than the previously reported average, of 79% and 76% 
for diagnosing CN, MCI, and AD,  and 76% for predicting progression from MCI to AD [8] [25]. 

The present study, for the first time, identified a complete list of important biomarkers for diagnosing 
cognitive state and progression from CN to MCI or AD. All the features identified by the machine learning 
were consistent with previous research, which independently suggested that CN patients with a high risk of 
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progression to AD showed increased mean cortical amyloid plaques [6], atrophy on the hippocampus and Nu-
cleus Accumbens [26] [27] [28] [29], left and right amygdala [30] [31] [27] [28], thinning of Left Hemispherical 
Middle and superior Temporal [29], and enlarged Right Inferior Lateral Ventricle [32]. All the previous studies 
have been focused on a specific brain portion, either using statistical methods to compare CN, MCI, and AD 
groups to determine the difference, or using Machine Learning that uses a certain amount of the features [12]. 
The present study uses all the available features calculated from MRI and PET scans to identify the important 
features without making assumptions about the importance of any portion of the brain. Such an approach allows 
a comprehensive evaluation of all possible MRI-based biomarkers, and therefore, enables the identification of 
a complete list of important features for diagnosis and assessment of progression to AD at an early stage.  

It is concluded that aging and lower education increases the risk of AD, but gender and handedness do 
not play significant roles in the development of AD. Based on the demographical data from OASIS3, the risk 
of cognitive impairment increases slightly with age and decreases slightly with longer years of education, which 
is consistent with previous studies [6] [33]. Within the OASIS3 data, there were more females than males in-
volved, however, more males were reported to have MCI and AD (Table 1). However, there is no statistical 
evidence showing the effect of gender on the risk of MCI and AD, which is similar to the conclusions from the 
literature [33], although Mielke [34] suggested that due to longer lifespan, women have a higher lifetime risk 
of AD. The present study also suggested that handedness does not play a significant role in the risk of AD. This 
aligns with a previous study that concluded that left-handed patients with AD do not differ from right-handed 
patients in the severity or pattern of neuropsychological deficits [35]. However, left-handedness may contribute 
to the early appearance of cognitive deficits during the development of Alzheimer disease, but such effects taper 
off with progression of the disease.  

It was found that it takes much longer to progress from CN to MCI or from CN to AD, but progression 
from MCI to AD is much shorter. This suggests that the capability of predicting the progression from CN to 
AD would provide a much better opportunity for doctors to develop treatment and therapy to prevent progres-
sion. Once a sign of MCI shows, progression could happen fast, leaving little to no time for early treatment and 
intervention. Hence, studies that aim to identify the risk of progression to MCI and AD or determine the features 
that could be used to predict the onset of AD in clinically cognitively normal individuals are essential for early 
prevention. 

This study demonstrated that the machine learning method employed significantly enhanced the accu-
racy of predicting the progression from CN to AD, achieving an accuracy of approximately 86% when using 
all visit data and 80% when using only Day 0 data (Figure 7) [8]. It was expected that using Day 0 data only 
would yield a lower accuracy than using the data from all visits because (1) the sample size from Day 0 was 
much smaller than that from all visits; (2) the symptom at Day 0 was not as pronounced as that at the later visits. 
These two reasons also caused the result that 80 features were needed for best accuracy if only Day 0 data were 
sued, while 40 features were needed if data of all visits were used. Despite this, the accuracy only improves 
from 82% using the first 10 features from 83% by using 80 features, suggesting that focusing only the top 10 
features would still yield a relatively accurate prediction for progression (Figure 7).  

The machine learning method implemented in this study was able to avoid overfitting successfully by 
using an ensemble algorithm. There were originally 203 features derived from post-processed MRI and global 
amyloid centiloid. With dimension reduction, features with strong correlations were removed, resulting in 85 
features with weak correlations in the final dataset, which is still a dataset with high dimensions that could result 
in overfitting. To mitigate that, classification methods with ensemble algorithms, Random Forest or Bagging 
Decision Tree, were used. Both methods are more accurate than a single decision tree because it minimizes 
overfitting. Bagging is an ensemble algorithm that fits multiple models on different subsets of a training dataset, 
then combines the predictions from all models to enhance the accuracy of the predictions. Random Forests is 
an extension of bagging that uses an enhanced version of the bootstrap sampling model to build multiple deci-
sion trees and aggregate them to get an accurate result [36]. 
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To prevent the risk of missing important features while avoiding overfitting, different feature selection 
methods were employed, ranging from 1 to all 85 features, using (1:20, 30, 40, 50, 60, 80) in RFE. As shown 
in Figure 4 and Figure 7, using all 85 features did not give the best accuracy, suggesting overfitting. Another 
important observation made from both figures was that Mean Cortical Amyloid Centiloid was the most im-
portant feature. However, the addition of the volume of Hippocampus significantly improved the accuracy. This 
indicates that increased amyloid centiloid and atrophy of the hippocampus are two of the most important char-
acteristics of AD or high risk of progression from CN to MCI or AD. It also suggests the importance of having 
both MRI and PET scans for accurate diagnosis as well as predicting the progression of the disease [25].  
 

Conclusion 
 
In conclusion, RFE machine learning with Random Forest and Bagged Decision Tree was effective in deter-
mining the cognitive state and forecasting the progression from CN to MCI or AD. The combination of MRI 
and PET scans provided an effective, non-invasive way for diagnosis. Important features from the scans were 
identified, providing important guidance on reading the MRI and PET scan images for doctors for diagnosis as 
well as evaluating the risk of progression. Future work will be focused on understanding the details of the 
amyloid distribution and identifying the regions with amyloid plaque deposition that have the most impact on 
cognitive health as well as progression. 
 

Limitations 
 
Two limitations in the study were identified. The first limitation was that all the dementia in the database were 
assumed to be AD. Although most of the dementia in the OASIS-3 database was AD, other types of dementia 
did exist, for example, Lewy Body Dementia. The data was not removed to ensure the sample size of dementia 
positive was not too small. The second limitation came from the data used to characterize the amyloid plaque. 
Only the global amyloid amount, i.e., mean cortical amyloid centiloid, was involved in the machine learning; 
therefore, regions that have the most impact on cognitive state were not identified, which will be the focus of 
future work.  
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