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ABSTRACT 
 
Although discussions about the nature of mathematical explanation are scarce in the philosophy literature, 
mathematical explanation plays an integral role in the philosophy of mathematical practice and has important 
consequences in other branches of philosophy. Various proposals are given to describe the criteria that make 
certain mathematical proofs more explanatory than others; however, none has been free from objections. These 
proposals also differ in important ways, which leads to the divergence of the two approaches to mathematical 
explanation: the ontic approach and the epistemic approach. This paper analyzes the strengths and weaknesses 
of the popular proposals, defends the ontic approach, and proposes the ontic pluralism account. This new ac-
count addresses a significant problem of previous ontic proposals. 
 

Introduction 
 
Compared to the explanation of scientific facts, the explanation of mathematical facts is receiving relatively 
little attention in philosophy research. However, the explanation of mathematical facts, in addition to its inde-
pendent interest, has important ramifications in other branches of philosophy. 

Mathematical explanation has multiple meanings when put into different contexts. Lyon and Colyvan 
distinguish two types of mathematical explanations: extra-mathematical and intra-mathematical (2008, p. 3). 
Extra-mathematical explanation is “explanation in natural science carried out by essential appeal to mathemat-
ical facts” (Mancosu, 2008, p. 135). For example, an explanation of a scientific fact that uses a property of 
prime numbers is an extra-mathematical explanation. Accounts for extra-mathematical explanations need to 
establish how abstract entities in mathematics connect to the physical world. Intra-mathematical explanation is 
the explanation of mathematical facts. Such explanations typically appear in the form of proofs, though other 
forms of explanation are also discussed in the literature.1 The distinction between proof that merely verifies and 
proof that explains is widely discussed in the community of mathematicians. This distinction is corroborated 
by a recent analysis, which concludes that mathematicians routinely describe themselves as explaining mathe-
matics in their research papers (Mejía-Ramos et al., 2019).  

This paper focuses on intra-mathematical explanations in the form of proofs. Study of intra-mathemat-
ical explanation is important beyond its independent interest. First, accounts for extra-mathematical explanation 
and scientific explanation benefit from a more complete understanding of intra-mathematical explanation. Sec-
ond, some theoretical virtues, including explanatory power, are used in some proposals to serve as extrinsic 
justifications for certain axioms or postulated abstract entities (Maddy, 1992, Ch. 4). For example, if a set of 
axioms produces more explanatory proofs than another set of axioms, then the difference in the explanatory 
power may be used to justify the use of the first set of axioms. Third, the intra-mathematical explanation also 
sheds light on a variation of Quine’s indispensability argument (Mancosu, 2008, pp. 140-141). It is possible to 

 
1 See D’Alessandro, 2020 and Lange, 2018. 
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develop a parallel of Quine’s indispensability argument that justifies the ontological existence of abstract math-
ematical entities (Mancosu, 2008, pp. 139-140). For example, number theory could be explained using higher-
level concepts, and thus, we can postulate these higher-level abstract entities and believe in their existence. This 
line of argument, albeit the objections against it, is still interesting; a thorough development of this argument 
requires a more detailed account of mathematical explanations of mathematical facts (Mancosu, 2008, pp. 139-
140). We will not delve into the indispensability argument further in this paper.  

Understanding the nature of intra-mathematical explanation depends on the answer to a crucial ques-
tion: what makes a mathematical proof explanatory? This paper summarizes various proposals, highlights the 
distinction between the ontic and epistemic approach to this question, and gives a unifying account—ontic 
pluralism.  
 

Popular Proposals 
 
There is no consensus on what makes a mathematical proof explanatory. Various proposals of mathematical 
explanations have been given by Steiner (1978), Kitcher (2008), Lange (2014), and Inglis and Mejía-Ramos 
(2021), and others, though each proposal has been unsatisfactory. 

Steiner proposes that the best criterion to distinguish an explanatory proof is whether the proof uses 
the characterizing property of objects or structures referenced in the theorem and whether by varying the char-
acterizing property one can obtain the proof of an analogous theorem. By a characterizing property, Steiner 
means “a property unique to a given entity or structure within a family or domain of such entities or structures” 
(Steiner, 1978, p. 143). For example, consider the theorem that √6 is irrational. A proof of this theorem utilizes 
the fact that every positive integer greater than or equal to 2 has a unique prime factorization. In this case, the 
prime factorization of 6 is a characterizing property of 6. An entity or structure could have multiple character-
izing properties when considered in different families of entities or structures. For example, the property that 6 
is a unique successor of 5 could also be a characterizing property of 6 in other contexts. Steiner claims that a 
proof of a theorem is explanatory if and only if it satisfies two criteria. First, the proof must make essential use 
of the characterizing property of an entity or structure in the theorem. Second, by changing the characterizing 
property in a family of entities or structures, a proof of a different theorem can be generated. 

There are other features of proofs, such as generality, abstraction, and visualization, that have been 
associated with explanatory proofs. It is also surmised that explanatory proof tends to be those that can lead to 
the discovery of the theorem. In his paper, Steiner explains the connections between these features and the 
explanatory value of a proof. First, “generality is often necessary for capturing the essence of a particular, and 
the same goes for abstraction” (Steiner, 1978, p. 146). Steiner suggests while an explanatory proof is not nec-
essarily general or abstract, an explanatory proof gives the potential for generalization. Taking the above ex-
ample, one can use a similar method to prove that for any positive integer 𝑛𝑛, √𝑛𝑛 is rational if and only if 𝑛𝑛 is a 
perfect square. Although the proof of the irrationality of √6 is not in itself general in the sense that it does not 
directly prove the irrationality of other positive integers, the method can be adapted easily to prove more general 
results. Therefore, this explanatory proof gives the potential for generalization. Second, explanatory proof can 
be used to discover results because proofs that qualify as being explanatory involve the characterizing property 
of the content of the theorem. Deforming such quality directly gives more results and leads to discovery. Finally, 
a characterizing property can be a geometric property. Hence, visual proof can, but not necessarily have to, be 
explanatory. 

Several objections are raised against Steiner’s proposal2, the most notable of which is a geometric 
theorem used by Lange as a counterexample (2014). The theorem states that “if ABCD is an isosceles trapezoid 
as shown in figure 1 (AB parallel to CD, AD = BC) such that AM = BK and ND = LC, then ML = KN” (Lange, 

 
2 See Resnik & Kushner, 1987, pp. 145-151. 
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2014, p. 501). Two proofs of a proposition about isosceles trapezoids are given, and one is more explanatory 
than the other. The only characterizing property of the mathematical entities or structures in the theorem is the 
unique property (AD = BC) that makes a trapezoid isosceles, but one can vary this characterizing property only 
by considering the same proposition on non-isosceles trapezoids. This new condition does not yield a new 
proposition; hence, Steiner’s proposal fails to account for the more explanatory proof. I think that Lange’s 
example gives an effective objection because making the trapezoid non-isosceles is more than a deformation of 
characterizing property. It is also a generalization: the set of isosceles triangles is a subset of the set of triangles. 
Hence, Steiner’s proposal needs to be revised to account for the range of legitimate deformations on the char-
acterizing property. 

 
Figure 1. An isosceles trapezoid. From. “Aspects of mathematical explanation: Symmetry, unity, and salience,” 
by M. Lange, 2014, Philosophical Review, 123(4), p. 501. 
 
 Kitcher offers a different account of mathematical explanation. A concise summary of Kitcher’s ac-
count can be found in Hafner and Mancosu’s paper (2008). According to Kitcher, our understanding of the 
world is advanced if the number of patterns of argument used to derive knowledge decreases. In other words, 
science and mathematics progress when the same patterns of arguments can be used again and again to derive 
more conclusions. Therefore, the highest goal of mathematical explanations is to provide such unification. 
Given a proof, one can distill an argument schema and a filling instruction such that one can reconstruct the 
proof by filling the right words to the argument schema according to the filling instruction. Kitcher judges the 
explanatoriness of a proof based on how many valid explanations are stored within the argument schema dis-
tilled from the proof. The degree of unification is directly proportional to the size of the set of conclusions and 
inversely proportional to the size of the set of argument patterns. Kitcher’s explanation, different from Steiner’s 
proposal, sees explanation as a global phenomenon. The proofs are not judged individually; instead, they are 
put within a broader context of systematization. 
 Hafner and Mancosu’s paper challenges Kitcher’s proposal by comparing three proofs of a theorem T 
in the theory of real closed field. Proof I uses an algorithm that outputs the truths of any theorem in the theory 
of a real closed field. General as it is, few mathematicians use the algorithm because it involves laborious 
computation and does not explain the theorem. Proof II uses a transfer principle, which states that any theorem 
that is true in the field of real number (a special case of real closed field) is true in any real closed field. Proof 
III proves the theorem T using results from algebraic geometry. Mathematicians tend to choose the third proof 
instead of the second proof because they are interested in seeing how the axioms of real closed field explain 
theorem T. Kitcher’s model, if succeeds, should be able to output the third proof. However, the model actually 
concludes that proof I is the most explanatory because its argument pattern can be used to prove all the results 
in the theory of real closed fields. Hafner and Mancosu also provide a detailed account of why proofs II and III 
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are incomparable under Kitcher’s framework. As a result, Kitcher’s model fails as a tool to compare explana-
toriness. One reason why the model fails is that it simply assumes that explanatory power can be compared 
quantitatively, and it overlooks the qualitative aspects of the proofs.  

Lange further challenges Kitcher’s idea by claiming that “a new proof technique can explain why some 
theorem holds even if that technique allows no new theorem to be proved” (Lange, 2014, p. 523). He refutes 
the characterization of mathematical explanation as a global phenomenon and insists the explanatory value of 
proofs be judged within the proof itself. 
 As opposed to appealing to characterizing properties or unification, Lange (2014) proposes that what 
distinguishes one proof from another as being explanatory is the use of a symmetry that is salient in the result. 
The symmetry here can be geometric as well as algebraic. For example, A theorem that involves the bilateral 
symmetry of an isosceles triangle has a geometric symmetry, while a theorem that involves the operation-pre-
serving properties of complex conjugation has an algebraic symmetry. Suppose a proposition is discovered, and 
it exhibits certain kinds of symmetry. Lange states that while a non-explanatory proof merely shows that the 
result is true through some brute-force manipulation, an explanatory proof is able to account for the symmetry 
of the result by tracing the symmetry back to a similar symmetry in the problem statement.  

For example, Lange’s proposal succeeds in accounting for the explanatoriness of the counterexample 
to Steiner's proposal. The explanatory proof of the theorem uses the bilateral symmetry of the isosceles trape-
zoid. The symmetry in the conclusion surprises us, and through the proof, one can see that this symmetry is 
traced back to the symmetry in the bilateral trapezoid, an object in the setup. The proof is explanatory because 
it relates the symmetry in the setup to account for the symmetry in the conclusion. 

Lange further develops that symmetry is just an instance of a broader account of mathematical expla-
nation. Suppose a proposition is discovered, and it exhibits certain salient features, and thus, demands explana-
tion. A proof is explanatory if it uses a similar feature in the setup, i.e., if it traces the salient feature of the result 
back to the feature of the theorem. Examples of such features include symmetry, unity, and simplicity. Sym-
metry is the symmetry in a mathematical sense explained above. When a result holds for multiple cases at the 
same time, or cases of different kinds, then a proof that accounts for the cases all at once exhibits unity. When 
the result is articulated in simple terms, a proof that does not use complicated mechanisms, such as cumbersome 
algebraic operations, and uses only the simple objects in the setup instead, exhibits simplicity.  

An objection to this proposal is given by D’Alessandro, who claims that Lange’s proposal fails to 
account for the case when a conjecture is used to explain a fact. He gives an example of 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 conjecture. 
𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 states that not every problem to which an attempted answer could be verified in polynomial time has 
an algorithm that solves the problem in polynomial time.  If 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 true, many results can be explained. For 
example, Chvatal in 1979 showed that one of the algorithms for the Set Cover problem returns a cover of size 
of at least (𝑙𝑙𝑛𝑛 𝑙𝑙𝑛𝑛 𝑛𝑛) × 𝑂𝑂𝑃𝑃𝑂𝑂 . 𝑂𝑂𝑃𝑃𝑂𝑂 is the greatest lower bound if 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 is true. Hence, 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 explains the 
greatest lower bound. However, there is no proof of 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃, so no saliency connection can be established 
between the results and the proofs (D’Alessandro, 2020, pp. 588-590).  

I think this objection is unsound. First, the fact that 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 can prove that 𝑂𝑂𝑃𝑃𝑂𝑂 is the greatest lower 
bound does not guarantee explanatoriness. There is a distinction between proofs that merely prove and proofs 
that explain, so D’Alessandro needs to show how 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 explains 𝑂𝑂𝑃𝑃𝑂𝑂. Second, D’Alessandro is thinking of 
an explanation of 𝑂𝑂𝑃𝑃𝑂𝑂 through the conjecture itself, but Lange’s account only applies to explanation in the 
form of proofs. When one says that “the conjecture explains the theorem,” then one can construct a proof of the 
theorem that assumes the truth of 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃. It is true that no proof of 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 is available. But one does not 
need to prove 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 in order to show the relationship between 𝑂𝑂𝑃𝑃𝑂𝑂 and 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃. So long a proof of OPT 
that assumes the truth of 𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃 is available, one can find the salient features of 𝑂𝑂𝑃𝑃𝑂𝑂 and trace such a feature 
to a similar feature in the proof. 

D’Alessandro gives another example. He claims that Hadwiger conjecture, if true, can explain the 
four-color theorem; but there is no proof of Hadwiger conjecture, so one cannot trace back the salient features 
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of the four-color theorem to a similar feature in the proof (D’Alessandro, 2020, pp. 588-590). This example 
does not give a valid objection for the same reason. One can work the explanatory argument of the four-color 
theorem into a proof that assumes the truth of the Hadwiger conjecture. With this proof, one can analyze how 
the salient features of the theorems are traced to a similar feature in the setup.  

In what follows, I will give two counterexamples of Lange’s proposal. 
 First, consider the classic proof of irrationality of 𝑒𝑒 (Rudin, 1976, p. 65). Suppose for the sake of con-
tradiction that 𝑒𝑒 = 𝑝𝑝

𝑞𝑞
 for some positive integers 𝑝𝑝, 𝑞𝑞. Consider the Taylor series expansion of 𝑒𝑒: 
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Multiply both sides by 𝑞𝑞!, we get 
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The left side is an integer, but the right side is between 0 and 1, a contradiction. Hence 𝑒𝑒 is irrational. 
 
 This proof is explanatory. The Taylor series expansion explains why 𝑒𝑒 is irrational. Here, Steiner’s 
account gives a clear reason for the explanatoriness of the proof. The Taylor series expansion of 𝑒𝑒 used in this 
proof is the characterizing property of 𝑒𝑒. By varying the characterizing property, one can obtain another theorem. 
For example, one can use essentially the same method to prove that 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 1  is irrational. Hence, the two 
criteria in Steiner’s account are met. However, Lange’s proposal fails to account for the explanatoriness of the 
proof. There is no feature that stands out in the setup of the theorem, which simply says the mathematical object 
𝑒𝑒 has the property of being irrational. As a result, no correspondence can be drawn between the salient features 
of the setup and the same features in the proof.  
 Now consider another example. Cantor proves that rational numbers are countable, i.e., there is a one-
to-one correspondence between the set of rational numbers and the set of natural numbers. One way of proving 
this theorem is to prove that the set of positive rational numbers is countable. The set of positive rational num-
bers can be defined as: 
 

�
𝑝𝑝
𝑞𝑞

:𝑝𝑝, 𝑞𝑞 ∈ 𝑍𝑍+, 𝑔𝑔𝑐𝑐𝑔𝑔 (𝑝𝑝, 𝑞𝑞)  = 1� 
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First, we list the set of positive rational numbers in a two-by-two array. The 𝑖𝑖𝑡𝑡ℎ row contains all and 
only the irreducible fractions with denominator 𝑖𝑖. 
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Start counting from 1

1
. Then 1

2
 and 2

1
. Then 1

3
, 3
2
, and 3

1
. Continue counting in diagonal lines in this fash-

ion. It is clear that every positive integer is counted exactly once in this manner. Hence, there is a one-to-one 
correspondence between the set of positive rational numbers and the set of natural numbers, so the set of positive 
rational numbers is countable. 
 This proof is explanatory because it gives a visual idea of how to count rational numbers. Again, 
Steiner’s characterizing property is successful in accounting for its explanatoriness. The characterizing property 
of the set of positive rational numbers is that it can be represented as a fraction, which is essentially an ordered 
pair of two positive integers. The proof above uses such characterizing property by giving an intuitive idea of 
how to count such ordered pairs using diagonal lines. Moreover, varying the characterizing property does gen-
erate new theorems. For example, if one changes the set of ordered pairs of two positive coprime integers to the 
set of ordered pairs of three positive coprime integers, then a similar enumeration can be applied. One only has 
to construct a three-dimensional grid and make a similar argument. Instead of counting by diagonal lines, one 
counts by diagonal planes.  

Lange’s proposal fails to account for the explanatoriness in this example for a reason similar to the 
reason why the proposal fails to account for the first example. There is no salient feature in the setup of the 
problem, so no saliency correspondence could be drawn. Like the first example, this example suggests a general 
problem with Lange’s proposal. If a theorem is in the form object O has property P, then a proof of such a 
theorem may be explanatory because it uses the characterizing property of O. Instead of any salient features, 
which can hardly be found in theorems similar to the two examples, the characterizing property of O explains 
P. Therefore, Steiner’s proposal works well with this kind of proposition, while Lange’s proposal fails. 
 A proposal drastically different from Steiner’s, Kitcher’s, and Lange’s is given by Inglis and Mejía-
Ramos (2021). According to them, Wilkenfeld’s functional explanation proposal can be integrated into the 
proposal in mathematical explanations. The basic premise is that explanations must generate objectual under-
standing, a type of understanding that is distinct from propositional understanding. Propositional understanding 
is understanding of whether a proposition is correct. For example, the grasp of the statement “there are two 
cows on the field” generates propositional understanding. Objectual understanding is understanding of an object. 
For example, the knowledge of physics or the knowledge of trees gives objectual understanding. Objectual 
understanding is often more holistic and admits a degree of understanding. Every mathematical proof supplies 
propositional understanding because it verifies the truth of a proposition, but only certain mathematical proof 
generates objectual understanding.  

Inglis and Mejía-Ramos define that a proof is explanatory if and only if the proof generates objectual 
understanding. They define that the objectual understanding of some phenomenon is maximal if it yields “fully 
comprehensive and maximally well-connected knowledge” about the phenomenon, and the objectual under-
standing is greater if it is less distant from the maximal understanding (Inglis & Mejía-Ramos, 2021, p. 6377).   

To assess the degree of understanding produced by a proof, a relatively simple and uncontroversial 
model of the human mind is used (see figure 2). A schema is a cognitive structure that allows people to treat 

Volume 12 Issue 2 (2023) 

ISSN: 2167-1907 www.JSR.org 6



“multiple elements of information as if it were a single element” (Inglis & Mejía-Ramos, 2021, p. 6378). For 
example, despite the complicated composition of a tree, one can immediately identify a tree when one sees the 
tree because of the schema. The model asserts that sensory input, which can be stored in a very short term, is 
processed in the sensory memory to be selected into the working memory, where cognition and thinking take 
place. Working memory can input information from sensory memory but also from the schema stored in the 
long-term memory. Working memory has a small capacity limit, but long-term memory can store many schemas. 
The end-product of the working memory processing is encoded into the long-term memory to form a new 
schema.  

 
Figure 2. A modal model of the mind. From “Functional explanation in mathematics,” by M. Inglis & J. P. 
Mejía-Ramos, 2021, Synthese, 198(26), p. 6379. 
 

Understanding is the process of integrating new schema into the long-term memory. This process can 
be done in multiple stages: 1) select from sensory memory; 2) process in the working memory; 3) integrate 
existing schemas from long-term memory; 4) re-organize this knowledge into a new schema. Working memory 
also contains two subsystems: visuospatial sketchpad and the phonological loop. Processing information in 
these two subsystems could enhance the limited capacity of the working memory. Hence, a proof is explanatory 
if it satisfies at least three properties: 1) it “makes it easy to select the information from sensory memory into 
working memory;” 2) it makes it easy to extract existing schemas from long-term memory and build connec-
tions and integrate new information with the existing schemas; 3) it makes it easy to split working memory load 
into the visuospatial sketchpad and phonological loop (Inglis & Mejía-Ramos, 2021, p. 6381).  

Inglis and Mejía-Ramos claim that Steiner’s characterizing property, Kitcher’s unification, and 
Lange’s saliency can be incorporated into this model. First, the unification of argument patterns makes it easy 
to integrate different schemas; hence, it contributes to the explanatoriness. Second, the use of a visuospatial 
sketchpad in splitting the working memory load accounts for the fact that visual proof tends to be more explan-
atory. Third, if a proof uses the characterizing property or the salient feature of the proposition, then it makes it 
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easy to extract existing schemas from long-term memory. This is because a proof using the characterizing prop-
erty makes it easy to compare objects that have characterizing properties or objects that do not.  

I think the main problem with this proposal is that it is oddly general. It does not directly address the 
problem of what specific features of the proofs contribute to the explanatoriness. Further contemplations on 
how the proposal works on specific examples and how it interprets other proposals illustrate the problems of 
the proposal in practice. 

First, this proposal does not seem to work well with Steiner’s as claimed. According to Steiner, the 
existence of a characterizing property is a criterion to judge explanatoriness. This does not imply that a subject 
reading an explanatory proof necessarily notices the characterizing property and compares the objects that have 
or do not have the property. Nor will the subject attempt to deform the characterizing property to generate a 
new theorem. Doing so may indeed make it easy to extract schema from the long-term memory, but the neces-
sity of such behavior is not implied. Therefore, the proposal fails to account for the plausibility of Steiner’s 
proposal. If one uses Inglis and Mejía-Ramos’ proposal seriously, one needs to demonstrate precisely how long-
term memory is extracted and how new schemas can be incorporated. 

Second, Inglis and Mejía-Ramos give a proof of the infinitude of prime number: “Assume that there 
is a largest prime, 𝑝𝑝 . Consider the number one greater than the product of all the primes: 𝑛𝑛 =
2 × 3 × 5 × … × 𝑝𝑝 + 1. Either 𝑛𝑛 is a product of primes or it is a prime larger than 𝑝𝑝. The latter would contradict 
our premise, so 𝑛𝑛 must be a product of primes. But if 𝑛𝑛 is a product of primes and has no prime factors greater 
than 𝑝𝑝 , then one of its factors, 𝑞𝑞 , must be in the sequence 2,3,5, … , 𝑝𝑝 , and therefore divides the product 
2 × 3 × 5 × … × 𝑝𝑝. However, since it is a factor of 𝑛𝑛 it also divides 𝑛𝑛. But a number which divides two numbers 
also divides their difference, so 𝑞𝑞  must also divide 𝑛𝑛 − (2 × 3 × 5 × … × 𝑝𝑝) = (2 × 3 × 5 × … × 𝑝𝑝 + 1) −
(2 × 3 × 5 ×. . .× 𝑝𝑝) = 1. However, no prime divides 1 so 𝑞𝑞 is not in the sequence 2,3,5, … , 𝑝𝑝. It follows that 
if 𝑛𝑛 is composite, it has at least one factor greater than 𝑝𝑝. This is a contradiction. Therefore, there is no largest 
prime number; there are infinitely many primes” (Inglis and Mejía-Ramos, 2021 pp. 6383-6384).   

According to Inglis and Mejía-Ramos, this proof is non-explanatory and does not generate objectual 
understanding. However, this proof, in fact, does generate objectual understanding of prime numbers. Readers 
of this proof acquire an understanding as to what happens when there are only finitely many primes. They will 
also understand the process of generating a new prime in a world where there are finitely many primes. This 
new knowledge moves the readers closer to the maximal understanding of prime numbers. This example shows 
that Inglis and Mejía-Ramos’ relatively flexible and general criterion sometimes identifies some non-explana-
tory proofs as explanatory ones.  
 

Ontic and Epistemic Approach to Mathematical Explanation 
 
Inglis and Mejía-Ramos’s proposal is different since it is an example of the epistemic approach to mathematical 
explanations as opposed to the ontic approach. The distinction between the epistemic and the ontic approach in 
the context of mathematical explanation is first given by Delarivière et al (2017), who borrow this distinction 
from Salmon (1984) on a similar debate in the context of scientific explanation. The ontic approach sees expla-
nations as “exhibitions of the ways in which what is to be explained fits into natural patterns or regularities”, 
while the epistemic approach sees explanations as statements or arguments (Salmon, 1984, p. 293). The ontic 
approach treats a proof as an object whose explanatory value can be judged using certain objective criteria, 
while the epistemic approach sees a proof as a way of communication or representation. An account of expla-
nation is ontic if it implies the statement that there is no proof that can be seen as explanatory in the view of 
one person but not explanatory in the view of another person. An account is epistemic if it implies that there is, 
at least in principle, such a proof. The ontic approach does not deny that explanatory proof tends to generate 
understanding, but while the epistemic approach takes the generation of understanding as an essential criterion 
for explanatoriness, the ontic approach only takes the increase of understanding as a consequence.  
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I prefer the ontic approach over the epistemic approach because it is more direct. In the discussion of 
the explanatory value of mathematical proof, it is more natural to analyze the property of the proof itself and 
explain how the generation of understanding becomes a consequence of explanations. In other words, the ontic 
account has the benefit of offering a closer look at the properties of the proofs themselves. In the next section, 
I will develop a pluralism account based on the ontic approach.  

The ontic approach faces several objections. Delarivière et al. (2017) suggest that “a mathematical 
proof can be seen as an argument by which one convinces oneself or others that something is true” (p. 311). It 
is plausible to think so because proofs are used to communicate between mathematicians so that a mathemati-
cian could understand the fruit of another mathematician’s work. Since communication through proofs is used 
by the explainers to generate the audience’s understanding, an account of mathematical explanation will inter-
pret how such effective communication is achieved. Therefore, the assumption that a proof is an argument leads 
to the conclusion that an epistemic reading of a mathematical explanation is a more natural choice.  

I think that a proof should be treated as a representation of mathematical content. One can change the 
specific expressions of a proof while not making changes to the content it contains. The same content can be 
written in a way that is accessible to those with little background or in a way that is more technical and rigorous. 
The relationship between a proof and its content is analogous to the relationship between a token and a type. 
For example, while a token of “9” could be a written mark “9” on the paper, a letter “9” on the screen, an 
inscription “9” on a stone, the object “9” itself is the type.  

The written proofs are essential to the communications between mathematicians; however, we are 
interested in the explanatory value of the content contained in proofs instead of the written proofs themselves. 
Perhaps only some people may be able to grasp a subset of the information contained in a proof, but the explan-
atoriness of a proof can be judged from the overarching set of information that it contains regardless of what 
subset of information a person can grasp. In this reading, the ontic approach is a more natural choice. 

Inglis and Mejía-Ramos (2021) present another challenge to the ontic approach. They argue that the 
ontic approach is based on a false assumption that mathematicians’ “judgments of explanatoriness are likely to 
coincide” (p. 6374). They imply that since such judgments do not coincide, it is not meaningful to speak of 
explanation as an object. I suggest that treating an explanation as an object does not contradict the fact that the 
judgments made by mathematicians do not coincide. Mathematicians, and philosophers alike, who concern 
about the topic of explanations, are inquirers who attempt to understand the objective explanatory values of 
proofs. Although mathematicians’ intuitive judgments are powerful indications of the objective explanatory 
value of a proof, these judgments do not determine such value.  

It is worth noting that treating mathematical explanations as objects does not imply that the question 
of whether proof P is explanatory as a determinate truth value. If two mathematicians disagree on the explana-
tory value of proof P, it is likely that the proof is explanatory in some ways but not in others. For example, a 
theorem T may exhibit the salient features of symmetry and simplicity (in Lange’s sense). Suppose the proof P 
proves T without heavily using computations and algebraic manipulations. This proof traces the feature of sim-
plicity from the conclusion back to the setup through the proofs but not the feature of symmetry. Two mathe-
maticians who place different weights on symmetry and simplicity may reach different conclusions on whether 
P is an explanatory proof.  

Explanatory values should be treated as qualitative descriptions of a proof instead of a quantity asso-
ciated with a proof. Hence, it is not necessary for the explanatoriness of every proof to have a determinate truth 
value. 
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Ontic Pluralism 
 
There is no consensus as to whether the ontic approach or the epistemic approach is better. The following 
section will be built on an ontic interpretation of mathematical explanation, and my new proposal attempts to 
address a problem in the current ontic proposals.  

In the existing ontic proposals, a model accounting for mathematical explanation is described, and it 
is tested against some typical mathematical proofs. The problem with this method is that there are numerous 
branches in mathematics, and within each branch, there are numerous significant results. The richness of math-
ematical knowledge and the lack of representative theorems and proofs make it hard to account for all cases 
with a single proposal. This difficulty is supported by the fact that many arguments against the proposals are 
based on counterexamples.  
 There are two ways to address this central issue. First, a new proposal of mathematical explanation 
can be given, which is robust enough so that there is no room for any counterexample. Second, one argues for 
pluralism on the ontic proposals, which leaves room for new proposals when counterexamples are found. So 
far, no single proposal seems to be free from objections. Therefore, I suggest a pluralism on the ontic proposals. 
In what follows, I will first develop an overarching framework under which ontic proposals can be admitted 
into and compared in the pluralism account. Then, I will argue that each ontic proposal discussed in section II 
contributes to the pluralism account. Lastly, I will give examples to show how these ontic proposals can be 
compared. 

First, I define an ontic proposal to be valuable if and only if it can be incorporated into the pluralist 
account based on the following criteria. 

Any valuable ontic account of mathematical explanation needs to exhibit how an explanatory proof 
causes “what is to be explained fits into the natural patterns or regularities” (Salmon, 1984, p. 293). A strict 
definition of the term “natural patterns” and “regularities” will not be given here because such a definition will 
narrow down the range of valuable proposals and potentially favor certain proposals over others. For a proposal 
to be valuable, it should give clarification of what it means for mathematical patterns to be natural and regular 
by answering the “how” question. For example, suppose that a proposal suggests that the explanatory value of 
a proof is directly proportional to its generality and use of abstraction. This proposal can be considered valuable 
if and only if the proponents of such proposals can demonstrate precisely how abstraction and generality con-
tribute to explicating the natural patterns in what is to be explained.  

Having set an overarching criterion for what an ontic proposal needs to have in order to be admitted 
into the pluralism framework, the next step is to provide a way to evaluate and qualify the proposals in the 
framework and to add new ontic proposals. Every proposal fails to account for explanations in some cases. 
Therefore, one needs to specify the ranges in which various ontic proposals are successful. The ranges certainly 
have overlapping areas, since some explanatory proofs are successfully accounted for by multiple proposals. 
These overlapping areas make my account for mathematical explanations truly pluralist. 

The relative value and range of applicability of valuable ontic proposals within the pluralism frame-
work are determined by their success or failure in judging the explanatory value of proofs.  

Consider an explanatory proof P, to a theorem T, and two valuable ontic proposals. If both proposals 
give a strong reason that P is an explanatory or non-explanatory proof, then the relative value of both proposals 
increases. It is not necessary to favor one over another because both proposals shed light on why X is explana-
tory.  

If, however, proposal A concludes that P is explanatory and proposal B concludes that P is non-ex-
planatory, then two cases should be considered.  

First, one of the proposals gives a stronger reason for its conclusion about the explanatory value of P 
than the other proposal. Without loss of generality, suppose that proposal A successfully accounts for why P is 
explanatory, while the reason given by proposal B for why P is non-explanatory is not as strong. Then, the 
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relative value of proposal A increases. If there is a set of proofs S, which contain P, such that proposal A can 
account for the explanatory value of every member of S in a way similar to how it accounts for the explanatory 
value of P, then we can say that proposal A applies to S. If there is a set of proofs S’, which contains P, such 
that proposal B fails to account for the explanatory value of every member of S’ in a way similar to how it fails 
to account for the explanatory value of P, then we can say that proposal B does not apply to S’. In this way, we 
know more about the range of applicability of the two proposals.  

Second, though the two proposals disagree with each other, both succeed in showing how P fits what 
is to be explained into natural patterns or regularities. This disagreement is an indication that the explanatoriness 
of P does not have a determinate truth value (see the above section for why such a conclusion can be accepted). 

If none of the proposals in the pluralism framework fails to give a strong reason describing the expla-
nations or the lack of explanations provided by a proof, then a new proposal should be introduced to account 
for this proof. The flexibility of adding proposals makes the ontic pluralism framework robust to counterexam-
ples. 

Every ontic proposal discussed in the “popular proposal” section is valuable. Steiner (1978) claims 
that a mathematical proof of a theorem T is explanatory if it satisfies two criteria. First, the proof uses a char-
acterizing property of a mathematical object or structure in the theorem T. Second, there exists a family of 
theorems such that T is a member of this family, and by “deforming” the characterizing property of T, one can 
prove another result in the family of propositions. Here, the proposal specifies that what makes the patterns in 
theorem T natural is the characterizing property. The patterns in the family of mathematical propositions be-
come natural through the explanatory proof because they are treated as the consequence of the characterizing 
property and the variations of the characterizing property.  

Kitcher (2008) claims that a proof of a theorem T is explanatory if the argument patterns used in the 
proof contribute to unification. The more conclusions this argument pattern can draw, and the fewer argument 
patterns the proof of T need, the more unification is attained. It is tempting to treat Kitcher’s proposal as an 
epistemic one. This is because Kitcher sees the value in explanation as advancing our understanding of the 
world, and he compares the explanatory value of a proof by looking at the argument patterns. The emphasis on 
understanding and the treatment of proofs as arguments make Kitcher’s proposal seem epistemic. However, 
Kitcher’s proposal has more ontic elements. First, Kitcher’s unification answers the “how” question by address-
ing how natural patterns and regularities are attained through explanatory proofs. According to Kitcher, if the 
proof of T is explanatory, then it is interpreted as a member of an optimal systematization, which provides 
organization to the scattering mathematical results. Therefore, the proof of T fits T into a natural member of the 
optimal systemization. Second, the argument patterns described by Kitcher can be treated as properties of the 
content of mathematical proofs. Interpreted broadly, two proofs have the same content if and only if they use 
the same argument pattern. The argument patterns and the unification they provide can be regarded as objective 
features of proofs. Hence, Kitcher’s proposal is a valuable ontic proposal. 

Finally, Lange (2014) claims that a proof of a theorem T, which consists of a setup and a conclusion, 
is explanatory if the proof traces a salient feature of the conclusion of T back to a similar feature in the setup of 
T. Such feature includes symmetry, unity, and simplicity. Here, the proof makes the salient feature in the con-
clusion less of a mathematical coincidence but more of a direct consequence of the similar feature in the setup. 
Mathematical coincidence is the opposite of natural patterns because it is the result of brute computations. By 
tracing the salient feature of the conclusion back to the setup, the explanatory proof accounts for how seemingly 
coincidental results are natural. Hence, Lange’s proposal is also valuable. 

Having specified the details of my pluralism account, I will demonstrate how proposals within this 
account can be evaluated by showing concrete examples. 
 In Lange’s paper on mathematical explanation (2014), Lange gives a counterexample against Steiner’s 
proposal (see section II). The counterexample illustrates a key issue of Steiner’s proposal. Suppose an object O 
may or may not have property Q, and suppose a theorem T has the following form: statement X about O is true 
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if and only if O has property Q. Assume further that Q is the only characterizing property, and that no other 
theorem is produced when Q is false. Let S’ be the set of proofs to the theorems in this form. In the counterex-
ample described in section II, O is a triangle, Q is the property that O is isosceles, and X is the statement that 
includes the setup of the diagram and the conclusion ML = KN. “Being isosceles” is the only characterizing 
property of the triangle, and varying the property obliterates X and any other similar theorems. Therefore, the 
proof to the theorem in the counterexample is a member of S’. 

Steiner’s account does not succeed in giving reasons for the explanatory values of every proof in S’. 
This is because the mere fact that there are no similar theorems when the property Q is varied does not directly 
imply that the proof is non-explanatory. In other words, the explanatory value of any proof of theorem T should 
not be affected by the fact that there simply does not exist a family of theorems that can be reasonably associated 
with the deformation of property Q. Although deforming the characterizing property does not yield new theo-
rems as required by Steiner’s proposal, a proof can still achieve explanations in other ways, such as by estab-
lishing a clear link between property Q and theorem T. Therefore, Steiner’s account falters on S’. 

Lange’s proposal succeeds in accounting for the explanatoriness of the counterexample he gives. This 
proposal describes clearly how the use of symmetry explains the geometric theorem. Suppose T is a geometric 
theorem involving a symmetry in its conclusion, and this symmetry is a salient feature of T. Let proof P be a 
proof that traces the symmetry in the conclusion back to the setup of T such that the symmetry in the setup 
accounts for the symmetry in the conclusion. Let S be the set of proofs in the form of P to theorems in the form 
of T. Then, Lange’s proposal successfully accounts for the explanatory values of all proofs in S. Therefore, the 
range of applicability of Lange’s includes S.  
 My counterexamples to Lange’s proposal also help delineate the range of applicability of Lange’s and 
Steiner’s proposal within the pluralism framework (section II). Lange’s proposal fails to analyze the explanatory 
value of the classic proof of the irrationality of 𝑒𝑒 and Cantor’s proof of the countability of rational numbers. 
Moreover, it fails to account for the proof of the theorems in the form object O has the property P (section II). 
Let S’ be all proofs in this form. Then, Lange’s proposal does not apply to S’. In section II, I have also explained 
how Steiner’s proposal applies to the proofs in S’. Hence, through the counterexamples to Lange’s proposal, 
the range of applicability of both proposals becomes more precisely described.3  
 

Possible Objections 
 
My ontic pluralism account does not subject to the common objections to pluralism.  

First, pluralism is often criticized as implying that “anything goes.” It is clear that my account does 
not share this issue. An ontic proposal can be considered and integrated into the pluralism account if and only 
if it answers the “how” question described above. There is a hard limit that distinguishes valuable proposals 
from other proposals. Additionally, different ontic proposals are tested against mathematical proofs, which dis-
tinguish one proposal from another in terms of the range of applicability. Therefore, the proposals within the 
pluralism framework do not have the same value. 

Second, pluralism is often criticized as bringing and comparing incompatible things within a single 
account. In my case, it may be argued that some proposals, such as Kitcher’s, are too different from others such 

 
3 It is worth noting that Delarivière et al. (2017) sketches an epistemic pluralism account. While both his ac-
count and mine are pluralist, there are two important differences. First, although Delarivière et al. are selec-
tive in which proposal to include in their pluralism account, and they test the proposal with cases of proofs, 
they do not provide a way to clearly describe the range of applicability of different proposals with the proofs. 
Second, I favor the ontic approach. The relative merit of the two approaches has been discussed in section III. 
Hence, the strategy of interpreting the proposals within the pluralism account is necessarily different. 
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that they cannot be accepted at the same time. My proposal addresses the issue by having an overarching crite-
rion. However different proposals may be, the extent to which they contribute to mathematical explanations can 
be compared in terms of how well they answer the “how” question. Instead of bringing contradictory elements 
to the pluralism account, the diversity of the proposal adds to the understanding of mathematical explanations. 
For example, the explanatory value of a proof can be evaluated both locally with Steiner’s and Lange’s proposal 
and globally (i.e. in the context of a systematization) with Kitcher’s proposal. This way of assessing a proof is 
not contradictory. One may argue that the unifying criterion makes my account monist in nature. I suggest that 
although the “how” question criterion is important in my proposal, the pluralism aspect of my account comes 
from the multiple ways in which the broad criterion is met. The criterion is monist, but the way to achieve this 
criterion is pluralist.  

One may feel uncomfortable about the idea that the values of the ontic proposals seem to be put above 
the values of mathematicians’ intuitive judgment. This concern is reasonable since many previous accounts use 
mathematicians’ judgment as a benchmark for their own proposals. However, I suggest that mathematicians’ 
judgment and the reasons they give form a proposal that can be compared the same way as other proposals 
within my account. If a mathematician claims that a proof is explanatory based on a subjective feeling, then his 
or her judgment will not be considered. But if a mathematician gives a strong reason as to why a proof is 
explanatory, and his or her judgment differs from all ontic proposals in the pluralism framework, then the math-
ematician’s reason can be treated as a proposal itself, whose range of applicability can be sketched by testing 
against other proofs.  
 

Conclusion 
 
An ontic pluralism account of mathematical explanation can enjoy the benefit of the ontic approach while being 
robust against potential counterexamples. Since the debate on the ontic and epistemic approach will likely not 
settle soon, my proposal gives a more complete understanding of mathematical explanations by addressing the 
shortcoming of existing ontic proposals, namely, the vulnerability against counterexamples. Under the plural-
ism framework, counterexamples do not detract from the values of individual ontic proposals; instead, they 
provide knowledge about their precise range of applicability.   

The next valuable topic of investigation would be to enrich the pluralist account through more exam-
ples and qualifications of existing proposals. It is also fruitful to explore the far-reaching consequences of an 
increasingly sophisticated understanding of intra-mathematical explanations discussed in the introduction of 
this paper. These consequences include a better understanding of extra-mathematical explanation and scientific 
explanation, a possible extension into an ontological argument, and a possibility of explanations as an extrinsic 
justification of mathematical axioms. 
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