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ABSTRACT 
 
Early and accurate diagnosis of brain tumors, a lethal disease caused by the abnormal growth of cells in the 
brain, is imperative to increase survival rates. A popular method for detection, diagnosis, and treatment is mag-
netic reasoning imaging (MRI) because it is non-invasive and provides high-quality visuals. Unfortunately, 
analyzing them manually can often be time-consuming and requires medical expertise. Image classification, a 
subset of computer vision, is a computer’s ability to classify and interpret objects within images. It can support 
a doctor’s diagnosis and serve as an entry-level screening system for brain tumors. This study aims to build an 
accurate machine learning model to predict the existence of brain tumors from magnetic resonance images. We 
used the Br35H dataset to build two different convolutional neural network (CNN) models: Keras Sequential 
Model (KSM) and Image Augmentation Model (IAM). First, images from our dataset were preprocessed, aug-
mented, and standardized to improve efficiency and reduce inaccuracies. Then, the data was normalized, and 
our models were trained. Lastly, aside from the validation accuracy and loss observed while training, we cross-
referenced the accuracy of our model using the accuracy validation dataset. Of our two models, the IAM out-
performed the KSM. The IAM had a validation accuracy of 97.99% and a validation loss of 4.94% on the Br35H 
dataset, and a 100% accuracy when classifying MRIs from the accuracy validation dataset. 
 

Introduction 
 
Due to their low survival rate, brain tumors are a deadly disease. They can either be benign (non-cancerous) or 
malignant (cancerous). Benign brain tumors gradually grow and are usually contained in one area of the brain, 
while malignant brain tumors rapidly grow and invade healthy brain tissue. The 5-year survival rate for these 
malignant tumors is only 36%, although it can vary based on age and the location of the tumor. 

It is more difficult to detect tumors in the brain compared to other body parts because ordinary radio-
active indicators have difficulty detecting tumor cells due to the blood-brain barrier. For that reason, two widely 
used methods to detect brain tumors are magnetic resonance imaging (MRI) and computer tomography (CT). 
Moreover, Computer-aided diagnosis (CAD) and machine learning help radiologists detect tumors. 

A faster, more efficient method to classify MRIs of the brain is imperative to the early detection and 
successful treatment of brain tumors. Automating or introducing computer-assisted screening rounds in medical 
imaging will contribute to combating the increasing healthcare worker shortage and will help medical profes-
sionals in developing countries. The effects of the recent pandemic have showcased the shortcomings of the 
healthcare system at times of crisis and emphasized the importance of assistive technologies at the starting 
stages of diagnosis.  
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In this study, we built a model to examine brain MRIs and accurately predict the existence of a tumor. 
Our model is trained on the Br35H:: Brain Tumor Detection 2020 (training) dataset and its performance is 
evaluated using Brain MRI Images for Brain Tumor Detection (accuracy validation) dataset. The model had a 
validation accuracy of 97.99% and a validation loss of 4.94% on the training dataset and had a 100% accuracy 
when classifying MRIs from the accuracy validation dataset.  
 

Methods 
 
Data Standardization 
 
We built our models using images from a publicly available dataset: Br35H :: Brain Tumor Detection 2020. It 
consists of 2998 images, split evenly into two categories: ‘yes’ tumor and ‘no’ tumor. Below are three samples 
from each category of the original dataset, with no manipulation.  
 

 
 
Figure 1. Raw images from the original dataset 
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As can be observed from Figure 1, our input images were not standardized and contained unnecessary 
pixels that could reduce the performance of our model. Therefore, we first pre-processed the data using the 
OpenCV library. There were two main manipulations of the original images. First, we converted the images to 
grayscale to reduce the input layers from three to one. Second, we scaled all of the images to 250x250 pixels. 
The pre-processed data was saved and organized appropriately. The images from Figure 1 were processed and 
are displayed in Figure 2. 

 

 
 
Figure 2. Images from the original dataset after standardization 
 

The dataset was then divided into training, validation, and testing categories. The breakdown of these 
categories can be observed in Table 1.  
 
Table 1. The distribution of images in training, testing, and validation stages 
 

 training testing validation total 

Br35H 2399 299 299 2998 
 

A data normalization layer is used to scale the pixel values from the greyscale MR images from 0 to 
1. This improves the stability and consistency of the model and decreases the needed training time, as the model 
has a stronger learning ability due to the extra layer. 
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Keras Sequential Model 
 
Our initial model was a basic Keras sequential model. It contains a linear stack of layers and is flexible because 
its variables (batch size, activation, padding) can be manipulated easily. The individual layers of this model can 
be observed in Figure 3. This model is basic and cannot provide high accuracy, even with the large amount of 
data provided. 
 

 
 
Figure 3. Architecture of the Keras Sequential Model 
 
Image Augmentation Model 
 
When we plotted the training and validation accuracy and loss, it was apparent that the model was overfitting. 
This issue, combined with our small dataset size, led us to try a different approach. We created a second se-
quential model using image augmentation to increase the input numbers and avoid overfitting. Specifically, we 
used three augmentation techniques: random horizontal flip, random rotation, and random zoom shown. Figure 
4 is an example of the pre-processing layers of the model.  
 

 
Figure 4. Images generated from the Image Augmentation Model 
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The elements of this CNN model are more complex than that of the KSM. The IAM consists of rescal-
ing, convolutional, pooling, flattening, and dropout layers. Figure 5 displays the architecture of the CNN that 
we built in this study. Convolutional layers use kernels, matrices of weights learned through training, that con-
volute over the input to identify the important and relevant features of the images. Their outputs are called 
feature maps because they display the location of different features (ex. edges, straight lines, objects). The 
MaxPooling2D layers decrease the size of feature maps by extracting the maximum value of a (2,2) matrix. The 
Flatten layer is usually towards the end of a neural network because it takes a feature map and transforms it into 
a one-dimensional vector. This one-dimensional vector is then imputed into a Dense layer that classifies the 
image. A dense layer is fully-connected, meaning that each value in this layer is connected to every value in the 
previous layer. When this model was trained, there was a significant decrease in overfitting and the validation 
accuracy was higher. 
 

 
 
Figure 5. Architecture of the Image Augmentation Model 
 
Finding the Optimal Number of Epochs and Batch Size 
 
After implementing the Image Augmentation Model, the validation accuracy was adequately high, but to further 
enhance the model, we experimented with the number of epochs and batch sizes. Since we noticed that after a 
certain number of iterations, our model's validation accuracy peaked, our goal was to identify an optimal epoch 
and batch size to avoid unnecessarily iterating through our dataset. 

In our code, we added an EarlyStopping callback that monitored when the validation loss stopped 
improving and concluded the training at that point. We ran this callback multiple times with different batch 
sizes to find the highest validation accuracy that showed the least signs of overfitting. A summary of our find-
ings can be found in Table 2.  
 
Table 2. Validation Accuracy and Loss for Different Batch Sizes and the Optimal Number of Epochs 

Epochs When Training Concluded Batch Size  Validation Accuracy (%) Validation Loss (%) 

28 256 94.65 18.19 

36 128 97.99 4.94 

13 64 89.32 24.91 

20 32 92.98 16.73 
The optimal batch size was 128, and the optimal number of epochs was 36.  
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Results 
 
Table 3. The training accuracy, training loss, validation accuracy, and validation loss for each of the two models 
 

 Training Accuracy 
(%) 

Training Loss 
(%) 

Validation Accuracy 
(%) 

Validation Loss 
(%) 

Keras Sequential 
Model 100.00 0.004055 99.33 15.77 

Image Augmentation 
Model 96.87 8.75 97.99 4.94 

        

 
 
Figure 6. Plotted Training and Validation Accuracy: 
Keras Sequential Model 

 
 
Figure 7. Plotted Training and Validation Accuracy: 
Image Augmentation Model

 
With such a high training accuracy and nearly negligible training loss (shown in Figure 6), we concluded that the 
Keras Sequential Model was overfitting. This meant that our model was extremely accurate against the input images, 
possibly including arbitrary traits and background noise, most likely due to the lack of data provided to our model. 

The Image Augmentation Model had reasonable training and validation accuracies and closely resembled 
each other (shown in Figure 7). This meant that our model was not only accurate against the input data, but it was able 
to correctly classify images from the validation set. 

To further validate these results, we decided to use our model to classify 100 random images in the Images 
Dataset for Brain Tumor Detection dataset. We referred to this as the accuracy validation dataset. The images were 
manually renamed to be consistent. This includes standardization such as renaming the files and fixing image num-
bering. Next, each image was inputted into our model which predicted if the brain MRI had a tumor and calculated a 
confidence percent. The results of this validation are summarized in Figure 8. Note that the minimum for the y-axis is 
75.  
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Figure 8. Model Confidence for accuracy validation dataset 
 

Although 100 images are a small cross-validation number, our model was able to accurately predict 100% of 
the images with relatively high confidence.  
 

Conclusion  
 
Through these methodologies, we were able to build an accurate CNN to assist in the early detection and classification 
of brain tumors. During our research, we came across many problems, some solvable and others not. Solvable issues 
included finding a usable dataset in terms of content and size, troubleshooting the initial Keras Sequential model with 
high overfitting, and finding a method to further validate our results.  

Our research supports the idea that Machine Learning Models can exponentially improve classification times 
for brain MRI. In our testing, our model needed an average of 16 seconds to classify an image. This is considerably 
faster than it would take a medical professional to perform the same task and more accessible as it does not require 
human involvement in the earlier stages.  

In the future, there are many ways to improve the accuracy and versatility of this model. For example, we 
could employ transfer learning and tweak expert models to create a model that would apply to a wider set of MRI 
orientations and perspectives. Moreover, we could develop the complexity of our research by using a larger dataset 
consisting of different angles and varied brain segments. To further analyze our results, we could create confusion 
matrices and calculate numbers on our False Positive and False Negative rates.  
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Frequently Used Terms 
 
Epoch: The number of times the algorithm trains the neural network with all the data. One cycle of training represents 
one epoch. 
 
Batch Size: The amount of data passed through the neural network at a time. 
 
Overfitting: The model accurately classifies training images because it has adapted to details and noise from the dataset 
rather than drawing generalized conclusions. It is unable to perform well with new data.  
 
Underfitting: The opposite of overfitting, where the model is unable to find the between input and output values and 
performs poorly on training data.  
 
Training Loss/Accuracy: The accuracy of the model’s predictions from the training dataset, which is the used to train 
the model. 
 
Validation Loss/Accuracy: The accuracy of the model’s predictions from the validation dataset, which is separated 
from the training data and used in fine tuning the model’s hyperparameters.    
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