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ABSTRACT 
 
Numerous physical and chemical problems at a high school level can be described by ordinary differential 
equations (ODEs) and partial differential equations (PDEs). However, the underlying equations troubled high 
school students because they often lack advanced mathematical skills, such as discrete calculus. Our goal is not 
to elaborate on those skills, but to offer a shortcut to the solution. In this paper, we demonstrated the use of 
Physics-Informed Neural Networks (PINNs), a neural network which solves the PDEs by incorporating the 
PDEs into the loss functions. The heat transfer equation and second order chemical kinetics are the two chosen 
model problems for high school seniors. Using PINNs, we were able to solve these two problems without re-
curring to university math. Hence, we strongly recommend peers to employ this method for physical or chemical 
problems for high school students and beyond. 
 

Introduction  
 
With the explosive growth of data and computing resources, Machine Learning (ML) algorithms represented 
by deep learning have generated revolutionary achievements in many disciplines, and text recognition is a 
prominent example. The Transformer (Vaswani et al., 2017), for instance,  is a network architecture that is 
based on attention mechanisms and the encoder-decoder framework. Through two machine translation tasks, 
the model has been shown to be more parallelizable and to require significantly less training time. The model 
achieved 28.4 BLEU (bilingual evaluation understudy) on the WMT14 (Ninth Workshop on Machine Transla-
tion) English to German translation task and 41.0 BLEU on the English to French translation task after training 
on eight GPUs. 

In the field of Computer Vision (CV), Swin Transformer (Liu et al., 2021) is a newly-proposed vision 
Transformer that is adapted from the previously mentioned Transformer for text recognition. Its representation 
is computed with shifted windows, producing higher efficiency by limiting self-attention computation and al-
lowing cross-window connections. Its performance demonstrates compatibility with a wide range of vision 
tasks, including image classification, with 87.3 top-1 accuracy on ImageNet-1K. 

In addition, this major accomplishment has greatly contributed to the domain of healthcare 
(Mohamadou, Halidou, & Kapen, 2020). The healthcare industry has been largely benefiting from the sharp 
rise of machine learning algorithms. In particular, certain algorithms can help diagnose and predict diseases by 
identifying patterns through continuous data training. COVID-19 (Ciotti et al., 2020), for instance, is a highly 
infectious disease caused by the SARS-CoV-2 virus. Starting a global epidemic, the virus may trigger side 
effects such as diabetes, heart disease, and asthma (Kim, Marrast, & Conigliaro, 2020). Presently, machine 
learning algorithms are used around the world to tackle this disease. For instance, meta-classifier (Classification 
via Regression (CR)) (Arpaci, Huang, Al-Emran, Al-Kabi, & Peng, 2021) techniques are utilized to predict 
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positive and negative cases with an accuracy of 84.21%. In addition, neural networks have also accelerated the 
detection of lung cancer from Computer Topography (CT) images. A recent report using a robust feature ex-
traction method and a feed-forward neural network achieved an overall accuracy of 96.67% on 5 types of images 
(Miah & Yousuf, 2015). In short, conventional machine learning algorithms have demonstrated their effective-
ness in the healthcare domain and many others. 

However, a large quantity of data is essential for the training of the previously mentioned Machine 
Learning algorithms, which can be too costly or even impossible to obtain. For example, when optimizing high-
entropy alloys, from equiatomic binary alloys to quinary alloys (Kaufmann & Vecchio, 2020) obtaining exper-
imental data to a find correlation between metal composition and catalytic efficiency becomes a high-dimen-
sional problem. In some academic disciplines such as drug discovery, design, and data-driven optimization of 
catalyst, etc, data generation, data curation, and data cleaning can be quite expensive or infeasible. In general,  in 
a "small data" regime, data-driven neural networks are inevitably quantified by “small data,” and extrapolations 
are generally less acceptable.  

A conventional neural network is often described as a black box model. Though neural networks are 
claimed to be able to approximate any function suggested by the universal approximation theorem (Lu & Lu, 
2020) they failed to provide any insights empowering the understanding of the function being approximated – 
which makes the underlying difficult to rationalize. 
Furthermore, traditional data-driven neural networks do not entirely satisfy the natural laws of physics described 
by the partial differential equations (PDEs) and are thus not capable of generating accurate results under the 
constraints of physics. 

As discussed above, conventional machine learning methods are typically less robust and ignorant of 
the underlying physics laws. This would result in the need for larger quantity of data and often requires complex 
neural network structures. Hence, physics-informed neural networks (PINNs) (Raissi, Perdikaris, & 
Karniadakis, 2019), a pioneering universal function approximator that runs under the regularization of physical 
models described by partial differential equations (PDEs), are utilized in various academic disciplines. PINNs 
solve problems solely by constraining the neural network with PDEs so that experimental data is no longer 
mandatory.  Conventionally, PDEs are solved using the finite difference (FD) and finite element (FE) methods, 
which require lengthy discretization of the system and a strong background in discrete calculus. PINNs, on the 
other hand, allow a discretization-free solution to PDEs, significantly lowering the barrier for solving PDEs, 
especially for high school students.  

Power system engineers have benefited from PINNs’ comparable advantages of less training data re-
quirement, a simpler structure, and higher accuracy. In the paper “Physics-Informed Neural Networks for Power 
Systems” (Misyris, Venzke, & Chatzivasileiadis, 2020), PINNs are reported to  have an enhanced efficiency of 
87 times faster duration when determining the frequency and rotor angle. 

When solving inverse problems in relation to 3D supersonic flows, wake flows, and biomedical flows, 
PINN has proven its effectiveness in the domain of computational fluid dynamics (Cai, Mao, Wang, Yin, & 
Karniadakis, 2022). Problems such as high dimensionality, noisy data, and mesh generation are solved. It is 
able to integrate the experimental data under the formulations of the Navier Stokes Equation (NSE) for both 
imcompressible and compressible flows.  

In this paper, we first demonstrate finite difference solution to heat transfer equation, which require 
lengthy derivation and the explicit finite difference method are not unconditional stable. Then, a PINNs solution 
to the same equation is proposed, although it requires a little bit more time to train the neural network, the 
discretization-free solution provided by PINNs saves a huge amount of time on mathematical derivations, al-
lowing scientists to focus on setting up the science problem without having to excessively delve into mathe-
matical textbooks. Furthermore, the PINN solution showed comparable accuracy with the FD method, and we 
suggest that PINNs provide an easier and possibly faster solution to physical problems that can be described 
with PDEs. After solving the heat transfer equation as an example of a high school physics problem, we further 
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apply PINNs to second order chemical kinetics like dimerization reaction to show that “physics-informed” 
neural networks can also be “chemistry-informed.”  
 

Theory  
 
Heat Transfer Equation  
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛼𝛼 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� (1) 

 
Were 𝛼𝛼 is the thermal diffusivity (𝑚𝑚2 𝑠𝑠−1). Solving a partial differential equation like Equation 1 convention-
ally involves the finite difference method (FDM) (Özişik, Orlande, Colaço, & Cotta, 2017) or the finite element 
method (FEM) (Wilson & Nickell, 1966). Applying FDM and FEM from scratch is often challenging for high 
school students without previous exposure to discrete calculus and programming. Commercial software like 
COMSOL is thus available, but its high demands for computational resources and meshing may still be a chal-
lenge. Its price tag may prevent high school students from utilizing it. To showcase the advantage of discreti-
zation-free simulation using PINNs, the problem setup is introduced here, followed by a finite difference solu-
tion using the explicit method and then the PINNs method for comparison in the next two sections. Note that 
for simplicity of illustration, we assume that all variables are dimensionless. 

The initial condition at 𝜕𝜕 = 0 is:  
 

𝜕𝜕 = 𝜋𝜋 sin(𝑥𝑥) , 𝑥𝑥 ∈ [0,1] (2) 
 

The boundary conditions at 𝑥𝑥 = 0 (left) or 1 (right) represents a heat sink: 
 

𝜕𝜕 = 0, 𝜕𝜕 ∈ [0,1] (3) 
 

The problem setup implies that the correct solution should observe the gradual dissipation of heat from 
high temperature to low temperature (the boundary), and as 𝜕𝜕 → ∞, 𝜕𝜕 = 0 in all the spatial domains.  
 
Solving Heat Transfer Equation Using Finite Difference Method  
 
The explicit method discretizes the heat conduction equation:  
 

𝜕𝜕𝑖𝑖𝑘𝑘 − 𝜕𝜕𝑖𝑖𝑘𝑘−1

Δ𝜕𝜕
= 𝛼𝛼

𝜕𝜕𝑖𝑖−1𝑘𝑘−1 − 2𝜕𝜕𝑖𝑖𝑘𝑘−1 + 𝜕𝜕𝑖𝑖+1𝑘𝑘−1

(Δ𝑥𝑥)2
(4) 

 
where 𝜕𝜕𝑖𝑖𝑘𝑘 represents the temperature at spatial step 𝑖𝑖 and temporal step 𝑘𝑘. Δ𝜕𝜕 and Δ𝑥𝑥 are temporal and spatial 
step sizes.  
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Figure 1. The scheme of explicit method. The solution at 𝜕𝜕𝑖𝑖𝑘𝑘+1 (blue dot) depends on 𝜕𝜕𝑖𝑖−1𝑘𝑘 , 𝜕𝜕𝑖𝑖𝑘𝑘 and 𝜕𝜕𝑖𝑖+1𝑘𝑘  (or-
ange dots) where 𝑘𝑘 + 1 stands for the next time step.  
 

Unfortunately, for explicit method to converge, Δ𝜕𝜕 and Δ𝑥𝑥 must satisfy the condition below (Thomée, 
1990):  
 

𝜆𝜆 =
Δ𝜕𝜕

(Δ𝑥𝑥)2 < 0.5 (5) 

In simulation, we use Δ𝑥𝑥 = 0.025 and Δ𝜕𝜕 = 0.0002 so that 𝜆𝜆 = 0.32. If the condition is not met, the 
solution will be unstable and diverging from the true solution as the temperature will oscillate widely in both 
spatial and temporal domain, possibly resulting in negative temperature which is certainly unrealistic. Conse-
quently, to maintain accuracy, Δ𝜕𝜕 must decrease with decreasing Δ𝑥𝑥, making simulation very inefficient as one 
may need small Δ𝑥𝑥 to accurately represent a continuous function. To solve Equation 4, it is rearranged to the 
following form,  
 

𝜕𝜕𝑖𝑖𝑘𝑘 − 𝜕𝜕𝑖𝑖𝑘𝑘−1 = 𝛼𝛼
Δ𝜕𝜕

(Δ𝑥𝑥)2 �𝜕𝜕𝑖𝑖−1
𝑘𝑘−1 − 2𝜕𝜕𝑖𝑖𝑘𝑘−1 + 𝜕𝜕𝑖𝑖+1𝑘𝑘−1� (6) 

 
which is then ultimately transformed to the following form as: 𝜆𝜆 = Δ𝑡𝑡

(Δ𝑥𝑥)2
. 

 
𝜕𝜕𝑖𝑖𝑘𝑘 = 𝜕𝜕𝑖𝑖𝑘𝑘−1 + 𝛼𝛼λ �𝜕𝜕𝑖𝑖−1𝑘𝑘−1 − 2𝜕𝜕𝑖𝑖𝑘𝑘−1 + 𝜕𝜕𝑖𝑖+1𝑘𝑘−1�  (7) 
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Figure 2. Solution of heat transfer equation using explicit finite element method which shows temporal dissi-
pation of heat where 𝛼𝛼 = 0.1. 
 

The temporal evolution of temperature is shown in Figure 2 as the solution to the heat transfer equation 
where the heat diffusivity is in dimensionless and 𝛼𝛼 = 0.1.  With the progressing of time, the sinusoidal curves 
are becoming flatter, suggesting transfer of heat from high temperature to low temperature.  
 
Solving Heat Transfer Equation Using PINNs  
 
The heat transfer equation can also be solved using PINNs without any prior knowledge of discretization. Train-
ing of PINNs for the heat transfer equation requires prediction of the temperature evolution 𝜕𝜕(𝜕𝜕, 𝑥𝑥) as a function 
of time, t, and spatial coordinate, x. Note that these parameters are dimensionless. The heat transfer equation 
with its boundary and initial conditions is formulated in the following form:  
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛼𝛼 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

� = 0 𝑜𝑜𝑜𝑜 𝒯𝒯 × Ω𝑥𝑥  (8) 

 
𝜕𝜕 = 0 𝑜𝑜𝑜𝑜 𝒯𝒯, 𝑥𝑥 = 0 (9) 

 
𝜕𝜕 = 0,   𝑜𝑜𝑜𝑜 𝒯𝒯,𝑥𝑥 = 1 (10) 

 
𝐶𝐶 = 𝜋𝜋 sin(𝑥𝑥) , 𝑜𝑜𝑜𝑜 𝜕𝜕 = 0, 𝑥𝑥 ∈ [0,1] (11) 

 
where 𝒯𝒯 ∈ [0,1] and Ω𝑥𝑥 ∈ [0,1] represents the temporal and one-dimensional spatial coordinates respectively.  
Equation 8 represents the heat transfer equation, Equation 9 and Equation 10 are the left and right boundaries 
respectively and Equation 11 is the initial condition at 𝜕𝜕 = 0.  Since there are four equations, four training 
datasets are required to train PINNs. To enforce Equation 8, a set of 𝑁𝑁 collocation points {𝜕𝜕𝑖𝑖 , 𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁  is generated 
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using a random uniform distribution throughout the temporal spatial domain. Similarly,  𝑁𝑁 collocation points 
are generated for the left and right boundaries, which are: {𝜕𝜕𝑖𝑖 , 𝑥𝑥 = 0}𝑖𝑖=1𝑁𝑁  and {𝜕𝜕𝑖𝑖, 𝑥𝑥 = 1}𝑖𝑖=1𝑁𝑁 . Similarly, the da-
tasets for Equation 11 are {𝜕𝜕 = 0, 𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑁𝑁 . Figure 3 illustrates the four sets of collocation points generated using 
uniform random distribution.  
 

 
 
Figure 3. An illustration of collocation points used to solve the heat transfer equation. There are four sets of 
collocation points to enforce the heat transfer equation, initial condition, and boundary conditions.  
 

Unlike conventional data driven neural network trained to predict 𝜕𝜕(𝜕𝜕, 𝑥𝑥) from enormous amount of 
known temperature at 𝒯𝒯 × Ω𝑋𝑋, with PINNs, a fully connected neural network is used to approximate the known 
concentration at the initial and boundary conditions. And more importantly, Equation 8 must be satisfied for 
every collocation point inside the 𝒯𝒯 × Ω𝑋𝑋 domain. To enforce the physical laws and conditions described in 
Equations 8 to 11, a loss function 𝒯𝒯 is constructed as a linear combination of four mean square error (MSE) 
functions: 
 

ℒ = 𝑤𝑤1𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓 + 𝑤𝑤2𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑤𝑤3𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏𝑖𝑖𝑑𝑑1 + 𝑤𝑤4𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏𝑖𝑖𝑑𝑑2 (12) 
 
where 𝑤𝑤𝑗𝑗  are weights of each loss function, which are hyperparameters for training to condition each MSEs 
with difference numerical scales. In this paper, all the weights are set to 1. The four MSEs are defined as:  
 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓 =
1
𝑁𝑁
��

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

− 𝛼𝛼 �
𝜕𝜕2𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖2

��
2𝑁𝑁

𝑖𝑖=1

 (13) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 =
1
𝑁𝑁
�(𝜕𝜕𝑖𝑖 − 1)2
𝑁𝑁

𝑖𝑖=1

 (14) 
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𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏𝑖𝑖𝑑𝑑1 =
1
𝑁𝑁
�(𝜕𝜕𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

(15) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏𝑖𝑖𝑑𝑑2 =
1
𝑁𝑁
�(𝜕𝜕𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (16) 

 
where 𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓 records the error of enforcing the heat transfer equation, 𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 records the error of enforcing 
initial conditions and the other two equations record the error of enforcing boundary conditions. When the errors 
are combined linearly to form ℒ, ℒ then represents the “global” error of solving PDE. The error is then mini-
mized with Adam optimizer (learning rate = 10-3) to find the optimal solution and a mini-batch training is used 
to stabilize the training process.  

After training, the neural network can predict 𝜕𝜕(𝜕𝜕, 𝑥𝑥) on the 𝒯𝒯 × Ω𝑥𝑥 domain. The predicted concentra-
tion profile is shown in the results section. 

 
Second Order Chemical Kinetics  
 
Not only to solve physics problem like heat transfer equation, PINNs can also solve chemistry problem like 
high order chemical kinetics. This section illustrates PINNs’ solution to second order chemical kinetics to pre-
sent PINNs as a future candidate for high school level chemical kinetics problems. Second order chemical 
kinetics, for example, dimerization of 2,5-dimethyl-3,4-diphenylcyclopentadienone as shown in Figure 4, ex-
ample of 𝐴𝐴 + 𝐴𝐴 → 𝐵𝐵, is solved using PINNs. The second order kinetics is described using an ordinary differ-
ential equation (ODE): 
 

𝑑𝑑[𝐴𝐴]
𝑑𝑑𝜕𝜕

= −𝑘𝑘[𝐴𝐴]2 (17) 

 
where [𝐴𝐴] is the concentration of A and k is the second order reaction rate constant. Note A, t, and k are dimen-
sionless. The equation is solved by rearrangement and integration of the form:   
 

�
1

[𝐴𝐴]2  𝑑𝑑[𝐴𝐴] = −𝑘𝑘 � 𝑑𝑑𝜕𝜕
𝑡𝑡

0

[𝐴𝐴]𝑡𝑡

[𝐴𝐴]0
 (18) 

 
So that the concentration at any time t is: 

 

[𝐴𝐴]𝑡𝑡 =
1

1
[𝐴𝐴]0

+ 𝑘𝑘𝜕𝜕
 (19) 

 
which is used to validate the PINNs solution.  
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Figure 4.Dimerization of 2,5-dimethyl-3,4-diphenylcyclopentadienone, an example of second order chemical 
kinetics.  
 

To solve the second order kinetics using PINNs, we incorporate the chemical kinetics and initial con-
dition into the loss functions: 
 

𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓 =
1
𝑁𝑁
��

𝜕𝜕[𝐴𝐴]
𝜕𝜕𝜕𝜕

+ 𝑘𝑘[𝐴𝐴]2�
2𝑁𝑁

𝑖𝑖=1

(20) 

 

𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 =
1
𝑁𝑁
�([𝐴𝐴] − 1)
𝑁𝑁

𝑖𝑖=1

(21) 

 
Thus, the global loss function for the second order chemical kinetics:  

 
ℒ = 𝑤𝑤1𝑀𝑀𝑀𝑀𝐸𝐸𝑓𝑓 + 𝑤𝑤2𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 (22) 

 

Simulation Methods 
 
The PINNs programs used as better alternatives to solve the heat transfer equation and chemical kinetics prob-
lems were written in Python 3.8.16 using the TensorFlow 2.92 library for neural networks. Both networks were 
trained for 400 epochs. The heat transfer equation was solved using the explicit finite difference method and 
the PINNs method. The second order chemical kinetic was solved using odeint in scipy library and PINNs. The 
former methods were the validation tool for the latter one, which also enabled the comparison of implementation 
time by the user. Figure 4 was created using Chemdraw 2020 version, and the other shown diagrams were 
drawn using Matplotlib. 
 

Results and Discussion  
 
PINNs Solution to Heat Transfer Equation 
 
The solution of the heat transfer equation is shown in Figure 5. The contour plot at the top shows the temporal 
spatial evolution of temperature.  The three concentration profiles at the bottom of Figure 5 show that the si-
nusoidal curves become flatter with the passage of time, suggesting that heat is dissipated from high tempera-
tures to low temperatures, which agrees well with the results shown in Figure 2.  
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As both methods provide the correct solution, the merit of PINNs lies within the simplicity of imple-
mentation. In comparison with the finite difference method, PINNs saved a huge amount of time on mathemat-
ical derivations by providing a discretization-free solution to partial differential equations. Such an advantage 
is essential for high school students, as discrete calculus and numeric methods are only covered at the university 
level. Finding an alternative to PDEs is thus essential. Moreover, PINNs can solve high dimensional problems 
without significantly changing the implemented code. Fortunately, the recent appearance of PINN provides a 
viable and more accessible solution to PDEs, as it requires almost no background in advanced mathematics.  
 

 
 
Figure 5. (Top) Temporal-spatial evolution of temperature solved by PINNs when 𝛼𝛼 = 0.1. (Bottom) The 
concentration profile at three time points: t=0.25, 0.5 and 0.75.  
 
PINNs Solution to Chemical Kinetics 
 
The PINN solution and the analytical solution to chemical kinetics are shown in Figure 6 when the second order 
reaction rate constant is 𝑘𝑘 = 0.1.  The figure showed that PINN mostly agreed with the analytical solution at 
the start and end of simulation, while slightly deviates from the analytical solution when 0 < 𝜕𝜕 < 1.  In general, 
PINNs has successfully predicted the temporal evolution of concentration for a second order kinetics. Thus, 
PINNs are also viable tools to solve high school chemistry problems, especially nonlinear chemical kinetics 
such as the second order reaction shown in Figure 6.  
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Figure 6. Solution to second order chemical kinetics when 𝑘𝑘 = 0.1. The PINN and ODE solution are shown 
in blue and orange respectively.  
 

Conclusion 
 
In this paper, we demonstrated the applications of PINNs to solve physical and chemical problems regularized 
by partial and ordinary differential equations. The 1D temporal-spatial evolution of heat transfer and second 
order chemical kinetics are solved successfully. The successes highlight the applicability of PINNs in most 
scientific disciplines, which can be described with PDEs. PINNs is still at its infant age, and constitute a grow-
ingly active area of research (Cuomo et al., 2022). The paper offers readers the starting points of physics-
informed machine learning for science, and we highly recommend applying this method in other scientific 
contexts. 
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