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ABSTRACT 
 
One of the primary reasons elephants are endangered is human-elephant conflict (HEC), the opposition that 
occurs between elephants and the humans living nearby. The violence that erupts in settings of HEC, such as 
crop fields, often results in both human and elephant deaths as both species struggle to coexist. Many methods 
are being researched to mitigate HEC, including playing audio playbacks that trigger flight responses in ele-
phants near crop fields and reduce chances of contact and destruction. Habituation to these stimuli creates the 
demand for a greater number and more types of auditory deterrents, but it would be unethical and inefficient to 
immediately jump to tests with crop fields without first verifying these playbacks are at least somewhat effec-
tive. Thus, this paper aims to analyze currently used auditory deterrents to determine if any acoustic similarities 
exist between them, and create a generalization for what characteristics make up an effective auditory deterrent. 
The results will help optimize current playbacks and help create a threshold of characteristics to use before 
future testing, to reduce habituation and human-elephant conflict. 
 

Introduction 
 
Over the past few decades, elephant numbers have rapidly declined due to the expansion of humans into the 
forest habitat of African and Asian elephants. In the country of Côte d’Ivoire, for example, elephant numbers 
have dropped from an estimated 1,790 savannah elephants and 3,050 forest elephants during pre-colonial times 
to merely 270 elephants in 2020 (Kouakou et al., 2020). Chen et al. found that an Asian elephant population in 
southwestern China lost 62% of their habitat within three decades, with increasing extinction rates due to an-
thropogenic pressures (2021). This reduction in elephant populations can more specifically be attributed to three 
main factors: poaching, habitat fragmentation, and human-elephant conflict (HEC).  

HEC often hurts both human and elephant species as they struggle for survival. Elephants are confined 
to smaller areas to live in while people set up farms around their habitats. This creates a clash between humans 
and elephants as elephants turn to these crops for food, and farmers deem elephants a threat to their crops and 
income. Mackenzie et. al found food insecurity and disease to be higher in households that experienced crop 
raiding, as well as lower scholastic achievement for children who grew up in these households (2012). Fernando 
et al. reported the major threat to elephants in Sri Lanka was the immigration of humans into their lands, with 
the elephant deaths related to this stemming mostly from gun shots by farmers (2011). As HEC levels continue 
to increase, there is an urgent need for a solution to help humans and elephants coexist.  

Currently, there are a variety of techniques being used to combat HEC. A literature review published 
in 2003 breaks these down into nine main categories: traditional methods, disturbance methods, killing ele-
phants, translocation, repellent methods, physical barriers, compensation schemes, wildlife utilization schemes, 
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and land use planning (Nelson et al.). Notable work among the “repellent method” category includes the dis-
covery of African elephants being deterred by playbacks of disturbed bee sounds (King et al., 2007), which 
makes way for these bee sounds to be used as an auditory deterrent for elephants. Thuppil et al.’s study found 
90% of crop raiding attempts were deterred through their active infrared system playing tiger growls (2015). 
Wijayagunawardane et al. found that there was a flight response 65% of the time when matriarchal family group 
vocalizations were being played (2015). However, this field is relatively niche, and no studies to the best of our 
knowledge have explored efficiency and reliability of auditory deterrents. 

Auditory deterrents can be further justified by an elephant’s hearing abilities. Indian elephants can 
hear frequencies ranging from 17 hertz to 10.5 kilohertz (Heffner & Heffner, 1980). In Langbauer et al.’s study, 
it was found that elephants responded to playbacks at 1.2 and 2.0 kilometers away from the testing site, as well 
as that males responded more frequently than females (1990). Because crop raiding is often done by male ele-
phants to gain reproductive advantage over other male elephants (Thuppil 2012), auditory deterrents can help 
target the right group more efficiently. The distance they can hear also helps rationalize the use of auditory 
deterrents because farmers or other users could space out where speakers for the audio playbacks are placed 
and where the crop fields are. Additionally, distance would give farmers or other users an easier transition into 
using auditory deterrents because backup methods may be placed closer to the crop fields in case the sounds do 
not work as intended. Yet, no studies to the best of our knowledge have tried to identify why these specific 
auditory deterrents worked better than others. 

While these results are promising, there is still a risk of habituation to the sounds being played. Good-
year found that when the pots and pans were used as an auditory deterrent, one elephant’s distress returned to 
near normal levels by the second trial, only showing stress on Trial 9 afterward (2015). Though habituation 
varies between individuals, the effectiveness of each auditory deterrent will significantly decrease each time 
the subject is exposed. This hints towards either finding more auditory deterrents that can be used and cycled 
out each farming season, or that auditory deterrents need to be adjusted to be more effective.  

Yet, it would be unethical and inefficient to immediately jump to field tests of these auditory deterrents 
without first verifying these playbacks are at least somewhat effective. If the stimuli tested do not work, crop 
fields would be destroyed, not to mention unnecessary stress caused to both the humans and elephants involved. 
Thus, in this paper we aim to quantitatively analyze previously used auditory playbacks to look for similar 
acoustic characteristics between them. Through gaining a deeper understanding of what makes these audio 
playbacks effective at deterring elephants, we aim to help optimize further field testing and provide key baseline 
levels of an effective auditory deterrent to look for before further study. 
 

Methods 
 
This project involved three main methods: calculating acoustic characteristics, performing linear regression, 
and generalizing the results. These procedures are outlined in detail below. 
 
Calculating Acoustic Characteristics 
 
In order to analyze audio playbacks, various authors were contacted who performed studies in this field. From 
this process, we were able to retrieve ten audio files total. The first two files were from Dr. Lucy King from her 
study “African elephants run from the sound of disturbed bees” (2007), which were a 30 second recording of 
bees and a ten second recording of white noise. The other eight files were provided by Dr. Thuppil from his 
studies from 2012, 2013, and 2015. These include leopard growls (10 second and 17 second files), tiger growls 
(21 second and 36 second files), lion growls (two 25 second files), and human shouts (97 second and 93 second 
files). We considered the white noise to be a control due to its low efficiency during Dr. King’s study, while all 
other playbacks to be auditory deterrents. [Include here whether all the sounds were considered deterrents]. All 
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files were converted to .wav format using cloudconvert.com. We analyzed all audio files using the R statistical 
programming language (version, accessed through RStudio Cloud). Each audio file was made into an object 
using the ‘tuneR’ package (ADD CITATION), and then the ‘soundgen’ analyze function was run for each 
object. The analyses we performed included novelty analysis, pitch tracking, roughness analysis, loudness anal-
ysis, and formant analysis. The results were copied onto a spreadsheet for later reference. Each analysis was 
performed independently, keeping other analyses constant due to file size and memory constraints within RStu-
dio. For example, if loudness characteristics were being retrieved for a specific round of analysis, the other 
analyses such as pitch tracking and roughness analysis were kept false, NULL, or 0. We used the summary 
characteristics which soundgen retrieved by looking at the overall audio playback, and used the mean values 
for each acoustic characteristic because we believe that it best represents the characteristic. 

Out of the 114 characteristics that we were able to retrieve, we filtered them based on importance and 
relevance before moving forward to linear regression. The table below outlines the characteristics we decided 
to move forward with. 
 
Table 1. Different acoustic characteristics used for study. Descriptions obtained from soundgen manual at 
https://cran.r-project.org/web/packages/soundgen/soundgen.pdf. CPP’s description was obtained through 
soundgen’s vignette at  
https://cran.r-project.org/web/packages/soundgen/vignettes/acoustic_analysis.html#cepstrum 
 

Name of 
Function 

Name of 
Characteristic 

Description 

flux Feature-Based 
Flux 

“The rate of change in acoustic features such as pitch, HNR, etc. (0 = 
none, 1 = max)” 

pitchDom Lowest Domi-
nant Frequency 
Band 

“...domThres (0 to 1) to find the lowest dominant frequency band, we 
do short-term FFT and take the lowest frequency with amplitude at 
least domThres” 

peakFreq Peak Frequency  “...the frequency with maximum spectral power (Hz)” 
amFreq Frequency of 

Amplitude Mod-
ulation 

“The frequency of amplitude modulation (amFreq, Hz) is calculated as 
the highest peak in the smoothed AM function” 

specCen-
troid 

Spectral Cen-
troid 

“...the center of gravity of the frame’s spectrum, first spectral moment 
(Hz)” 

quartile25 25% Quartile of 
Spectrum of 
Voiced Frames 

N/A 

quartile50 50% Quartile of 
Spectrum of 
Voiced Frames 

N/A 

quartile75 75% Quartile of 
Spectrum of 
Voiced Frames 

N/A 

harmHeight Harmonics 
Height 

“...how high harmonics reach in the spectrum, based on the best guess 
at pitch” 

HNR Harmonics-to-
Noise Ratio 

“...a measure of harmonicity returned by soundgen:::getPitchAutocor” 
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Name of 
Function 

Name of 
Characteristic 

Description 

ampl Amplitude Enve-
lope 

N/A 

amDep Depth Of Ampli-
tude Modulation 

“...amplitude modulation (AM) depth, %. 0: no change; 100: AM with 
amplitude 
range equal to the dynamic range of the sound” 
“...ratio of this peak [highest peak in the smoothed AM function] to the 
median AM over amRange” 

Loudness N/A “...a vector of loudness in sone per STFT frame” 
“...the subjective loudness of each sound is estimated by getLoudness, 
which assumes 
frequency sensitivity typical of human hearing” 
“... getLoudness estimates how loud a sound will be experienced if it is 
played 
back at an SPL of SPL_measured dB. The most meaningful way to use 
the output is to compare the loudness of several sounds analyzed with 
identical settings or of different segments within the same 
recording.” 

harmEnergy Harmonics En-
ergy 

“...the amount of energy in upper harmonics” 

pitch Fundamental 
Frequency 

“a numeric vector of f0 values in Hz or a dataframe specifying the time 
(ms or 0 
to 1) and value (Hz) of each anchor, hereafter "anchor format". These 
anchors 
are used to create a smooth contour of fundamental frequency f0 (pitch) 
within 
one syllable” 

entropy Spectral Flat-
ness/Wiener En-
tropy 

“Weiner entropy of the spectrum of the current frame. Close to 0: pure 
tone or tonal sound with nearly all energy in harmonics; close to 1: 
white noise” 

specSlope Spectral Slope “the slope of linear regression fit to the spectrum below cutFreq 
(dB/kHz)” 

f1_freq Frequency of 
First Formant 

N/A 

roughness N/A “the amount of amplitude modulation” 
CPP Cepstral Peak 

Prominence 
“... cepstrum is a way to find periodicity in the spectrum … Cepstral 
Peak Prominence or CPP. This is the ratio of the highest cepstral peak 
(presumably corresponding to f0) to the trend line over cepstrum - basi-
cally, it shows whether cepstrum has a clear peak.”  
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Performing Linear Regression and Principal Component Analysis 
 
Once the acoustic characteristics were calculated for each auditory deterrent, we plotted them to visually iden-
tify any similarities among the auditory deterrents and specific acoustic characteristics. The rest of the analysis 
was done using R. We plotted each characteristic as a function of efficiency through scatter plots, and used the 
‘lme4’ package (Bates et al. 2015) to calculate a linear regression including the correlation coefficient and the 
p-value. For this study, we decided to use the Adjusted R2 value to reduce chances of overfitting data. If the 
correlation coefficient was greater than 0.4, the acoustic characteristic was noted down to be accounted for later. 
If the value could be rounded to 0.4, the p-value was checked to determine if the acoustic characteristic should 
be noted. We noted down any characteristics with p-values of 0.05 or below in this category. 

We performed another round of linear regressions that included only the bees, white noise, lion files, 
and tiger files. This was to reduce the chances of confounding variables in the study due to the differences in 
study design. King et al. placed the auditory deterrents 10 meters away from the elephants tested and Thuppil 
et al. placed only the lion and tiger files ten meters away from the subjects. Any acoustic characteristics with 
correlation coefficients of 0.4 were also noted down from these linear regressions. 

We also performed principal component analysis using all ten audio files and the characteristics that 
were obtained through the methods outlined in the calculating acoustic characteristics section. This was to 
identify if the audio playbacks were similar in any way with their acoustic characteristics. 
 
Generalizing Results 
 
After finding significant characteristics that contributed to an auditory deterrent’s effectiveness, we wanted to 
calculate recommendations for the most effective values of these characteristics. To create the generalizations, 
we used a weighted average approach. First, we added up the decimal values of all the efficiencies used and set 
them equal to a value denoted sum. We then divided the efficiency of the first auditory deterrent by sum and 
set this equal to the weightage of the specific auditory deterrent. We repeated this process until the weightages 
for all the auditory deterrents were calculated. To calculate weighted average, we multiplied the first noted 
characteristic values of the auditory deterrents by their respective weightages and calculated the sum of these 
values, then divided this value by the total number of auditory deterrents. This process was repeated for each 
noted characteristic to find the weighted average for each. 
 

Results 
 
We were able to calculate acoustic characteristics for a majority of the auditory deterrents A total of 114 acoustic 
characteristics were acquired for at least one of the auditory deterrents. Some of the analyses in the analyze 
function were unable to run, including the novelty analysis that only outputted values for one lion file and the 
two leopard files. We believe this might be due to the file sizes or the structure of the audio playbacks. The 
resulting values were visually plotted through bar charts, shown in Figure 1 for the mean Wiener entropy of 
these playbacks and the mean flux, two characteristics that clearly display how white noise contrasts all other 
audio playbacks. Feature-based flux was about two times higher than the various other sounds, while white 
noise seems to be about seven times higher in mean Wiener entropy than most other auditory playbacks. 
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Figure 1. Examples of acoustic characteristics for each auditory deterrents. Bar chart displaying audio play-
backs vs. mean Wiener entropy (left) and bar chart displaying audio playbacks vs. mean feature-based flux 
(right). 
 

The mean peak frequency was also significantly higher in white noise, at more than seven times higher 
than the audio playbacks with shouting and more than 51 times higher than felid growls like lion sounds.  

The scatter plots we made were fairly clustered around certain specific values. Figure 2 shows some 
of these patterns, with the lowest dominant frequency band characteristic exhibiting a linear relationship with 
the higher efficiency playbacks while roughness was random. The Adjusted R2 of the lowest dominant fre-
quency band of the audio playbacks was found to be 0.5107, while the Adjusted R2 of roughness was -0.1082. 
 

 
Figure 2. Acoustic characteristics of various auditory deterrents plotted against efficiencies of deterrents. Scat-
ter plots of lowest dominant frequency band in Hertz vs. efficiencies (left) and roughness in percentage vs. 
efficiencies (right) of each audio playback. 
 

After performing all rounds of linear regression, the acoustic characteristics found significant for effi-
ciency were noted in the table below. Their weighted average was also calculated and noted in Table 2. 
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Table 2. Acoustic characteristics determined significant by Adjusted R2 values and p-values. Characteristics 
with Adjusted R2 values lower than 0.4 were compared with p-values before deciding if they were significant. 

Name of Acoustic  
Characteristic 

Adjusted 
R2 

p-value Recommended Value for Effectiveness 

Lowest Dominant  
Frequency Band 

0.5107 0.0184 344.7551 Hz 

Loudness 0.5476 0.0087 11.4357 dB 
25% Quartile 0.4325 0.0231 438.5812 Hz 

Peak Frequency 0.3557 0.0404 376.7834 Hz 
Depth of Amplitude Modula-

tion 
0.3739 0.0472 -11.6774% 

Flux 0.4278 0.0239 0.0732 
 

For the analysis performed with only the audio playbacks placed about ten meters away during testing, 
the correlation coefficients and p-values were increased. As a comparison, the lowest dominant frequency band 
characteristic had an Adjusted R2 value of 0.8797, while roughness had an Adjusted R2 value of 0.4941. This 
can be seen through Figure 3, with a clear linear relationship occurring with the audio playbacks placed 10 
meters away during testing. Due to the closer proximity of values for most of the characteristics in this second 
round of analysis, many were determined to be significant based on efficiency. They are outlined in Table 3. 
 
Table 3. Acoustic characteristics determined significant by Adjusted R2 values and p-values of audio playbacks 
placed 10 meters away during testing. 

Name of Characteristic Adjusted R2  p-value Recommended Value for Effectiveness 

Fundamental Frequency  0.6351 0.0357 247.0620 Hz 

Harmonics to Noise Ratio 0.8113 0.0090 2.7451 

Harmonics Height 0.6652 0.0298 923.9781 

75% Quartile 0.6234 0.0382 1922.9680 Hz 

50% Quartile 0.7789 0.0125 618.7998 Hz 

25% Quartile 0.8216 0.0080 190.5374 Hz 

Spectral Centroid 0.6443 0.0338 1382.5815 Hz 

Roughness 0.4941 0.0723 N/A 

Frequency of Amplitude Modulation  0.5222 0.1033 33.6172 Hz 

Peak Frequency 0.8322 0.0071 125.2522 Hz 

Flux 0.7577 0.0151 0.0432 

Lowest Dominant Frequency Band 0.8797 0.01183 165.4009 Hz 

Root Mean Square of Amplitude Per Frame 0.7061 0.0226 0.0573 
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We were also able to perform principal component analysis, whose results can be found in Figure 3.  

 
Figure 3. A biplot displaying principal component analysis done on all the audio playbacks and their acoustic 
characteristics.  
 

Discussion 
 
Figure 3 shows the biplot of principal component analysis, which helps visually display the similarities between 
the leopard, lion, tiger, and bee sounds due to their proximity. The white noise appears to be an outlier, which 
proves the higher efficiency playbacks appear to be acoustically similar. Additionally, the auditory deterrents 
with high efficiency (such as the bee, leopard, tiger, and lion sounds) are all clustered together, implying their 
acoustic similarities. The human shout playbacks, which had low efficiency, and the white noise (control de-
terrent) playbacks are away from this cluster, which further supports the idea that the high efficiency auditory 
deterrents have similar acoustic characteristics. 

The Fundamental Frequency is a clear example of the white noise differing in its acoustic characteris-
tics; however it is uncertain whether this difference can be attributed to efficiency due to the similarity of tiger, 
leopard, and lion growls. This is because all of the highly efficient sounds were felid growls, and so the recom-
mended values for acoustic characteristics may be skewed towards being more similar to felid growls rather 
than being efficient. This creates the need for more research in the area to determine if other inefficient sounds 
that do not subjectively sound similar to felid growls would still produce the same results.  
 

Conclusion 
 
To summarize, all audio playbacks were similar on the basis of lowest dominant frequency band, loudness, 25% 
quartile, peak frequency, depth of amplitude modulation, and flux, and these characteristics were found to be 
significant towards efficiency. Through a weighted average approach, we were able to create recommended 
values for effective auditory deterrents, while using linear regression to verify the similarities between the au-
ditory deterrents used. We hope this research can be used by farmers, researchers, or ecologists as a reference 
of acoustic characteristic values that they should aim for when selecting or testing auditory deterrents and min-
imize the chance of error with crop fields and elephants. Nonetheless, we believe more research must be done 
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to understand how these predicted values play out in real-world scenarios. Thus, this makes way for studies in 
habituation of auditory deterrents and elephants, as the values retrieved here can be used to determine how 
effective this research is at reducing habituation. We hope that the general methods used here can be applied in 
a variety of contexts to understand how to mitigate human-wildlife conflict, such as acoustic deterrents for 
deterring fish from fishing nets. 
 

Limitations 
 
Though we tried getting rid of external factors, there are many confounding variables that could have affected 
our results. For example, King et al. found one group of elephants tested did not respond to the bee sounds 
played, interpreted as the group not remembering or encountering bees [2007]. There would need to be more 
research in this area to determine if elephants only respond to sounds that they have encountered before and 
have gained a negative connotation of or if elephants can be deterred with any sounds. Additionally, there were 
only six sounds placed ten meters away (bees, white noise, lion files, and tiger files), meaning that correlation 
coefficient could have been skewed by the small sample size and similarities in subjective pitch. Thus, it is 
important to consider testing various distances to determine if ten meters is really optimal or if these values are 
correlated due to other reasons.  
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