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ABSTRACT 
 
Recorded speech signals often contain noise that affects the quality of the signal and reduces intelligibility. 
Several studies have used Generative Adversarial Networks (GANs) to remove noise artifacts and improve 
speech intelligibility. However, GANs can suffer from gradient vanishing or gradient explosion that can reduce 
their effectiveness in denoising. To mitigate gradient vanishing, we applied the CoulombGAN architecture to 
speech denoising using a model structure similar to Hifi-GAN, the current state of the art speech denoiser. We 
call this new model Hifi-CoGAN. We used a WaveNet generator to denoise signals, a PostNet for general 
cleanup, and a Multi-Resolution Discriminator to evaluate the signal quality relative to the clean signal. Our 
results show that Hifi-CoGAN was able to outperform Hifi-GAN in many of the narrowband signals (signals 
with a limited range of frequencies) in terms of the Short-Term Objective Intelligibility (STOI) and Perceptual 
Evaluation of Speech Quality (PESQ) metrics. However, the model did not perform as well as Hifi-GAN with 
wideband noise signals (signals with a wider range of frequencies) such as white noise, so future work must be 
done to improve the model for these noise signals. 
 

Introduction 
 
Recorded speech signals are often corrupted by background noise, causing reductions in overall sound quality 
and intelligibility. With the prevalence of virtual meetings, there is an increased demand for speech denoising 
to remove noise artifacts from noisy speech signals. The majority of applications involve microphone record-
ings through communications software such as Zoom or WebEx, where noisy environments can hamper effec-
tive communication. Other uses are for speech recognition systems, where removing speech artifacts from 
speech datasets can improve a model’s ability to classify the speaker and identify specific components of the 
signal [1]. Finally, speech enhancements can be applied to cochlear implants before passing in the signal into 
the speaker, improving intelligibility [2]. The goal of our work is to improve band-limited speech signals by 
removing noise artifacts and generating clean signals that are indicative of high-quality single-channel record-
ings. 

One of the earliest forms of denoising speech systems was spectral subtraction, which estimated the 
noise spectrum from the signal and subtracted it from the noisy signal to create clean speech [3]. Spectral sub-
traction was effective at reducing noise to an extent but introduces additional speech artifacts [4]. Another 
method of denoising speech are Wiener filter algorithms, which filter out any noise to provide an estimate of 
the clean signal. However, the Wiener filter assumes that both the signal and noise are second-order stationary 
and that correlation properties are known, which may not be the case [5]. Overall, both Wiener filter algorithms 
and spectral subtraction result in only minor reductions in background noise and have been vastly outperformed 
by neural network-based models [6].  

One of the most promising advances in speech enhancement in machine learning has been through 
Recurrent Neural Networks (RNNs), which have outperformed non-network based models in many objective 
metrics. For example, Huang et al. achieved a 4.32-5.42 GSIR dB gain in comparison to other models using 
their deep RNN [7]. Additionally, Long-Short Term Memory (LSTM) networks with auto-encoders have been 
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applied to speech denoising and had similar success. Maas et. al used a Deep Recurrent Denoising Autoencoder 
with three hidden layers and three frames to consider larger temporal windows of the signal [8]. Pandey et. al 
used a variational auto-encoder with an RNN architecture and achieved improvements in monaural speech sep-
aration in the SDR, SIR, and SAR metrics [9]. However, both RNNs and LSTMs can create speech artifacts 
from a mismatching phase, reducing their own effectiveness at removing noise [10]. Most speech datasets are 
limited in size, which in turn hampers training RNNs, as they are limited in their size and complexity and may 
not achieve optimal results. 

The most recent research in speech denoising through machine learning has been through Generative 
Adversarial Networks (GAN). One advantage of GANs over RNNs and LSTMs is the adversarial loss function 
of the discriminator GANS use. Instead of using a single loss function to increase the accuracy of the model, 
GANs use loss functions for both the generator and the discriminator. The discriminator is trained by this loss 
function to identify real and fake signals, improving the generator to better target the real dataset. Unlike RNNs 
that need labeled data, little to no training data is required for fully unsupervised GANs.  

Researchers have used GANs for speech denoising with both spectral features and waveforms. For 
example, Donahue et. al used a spectral feature mapping approach in both a Speech Enhancement GAN model 
(SEGAN) and Frequency-domain Speech Enhancement GAN model (FSEGAN) in the context of Automatic 
Speech Recognition (ASR) [11]. Both models produced an improvement in their ASR model in comparison to 
no speech enhancement model. Fu et. al built on the work of Donahue et. al by introducing MetricGAN, which 
has a 𝐿𝐿𝑝𝑝 loss in the SEGAN model to ensure that the discriminator and generator are trained based on objective 
metrics such as PESQ and STOI [12]. For waveform models, Phan et al. created an iterative SEGAN model 
and deep SEGAN model to test the impact of multiple generators and performed well in objective metrics [13]. 
One of the current state-of-the-art models, Hifi-GAN, combines both these approaches by using deep feature 
matching and waveform processing [14].  

In this paper, we extend the Hifi-GAN based approach by applying the CoulombGAN architecture to 
speech denoising, which can prevent gradient vanishing and better target the clean distribution. We call this 
new model Hifi-CoGAN. The underlying idea behind CoulombGAN is that the generated and true samples 
create an electric potential field, and the model learns by minimizing the potential between a generated and true 
sample. Our goal is to improve upon the existing GAN-based speech denoising techniques in terms of both 
objective metrics and removal of speech artifacts. CoulombGAN has been previously used for images, and to 
the best of our knowledge, we are the first to adopt CoulombGAN for processing 1D data and speech signal 
denoising. Our results improve over the current state of the art results of Hifi-GAN. 

The rest of the paper is outlined as follows: we provide an overview of GANs (Section 2), we introduce 
the proposed method in more detail (Section 3) and the setup of the experiment (Section 4), we report the results 
(Section 5), we discuss the results (Section 6), and finally, we reach a conclusion (Section 7). 
 

Generative Adversarial Networks 
 
Generative Adversarial Networks work by mapping a sample 𝑧𝑧 from an initial distribution to a sample 𝑥𝑥 in a 
target distribution, which could be speech signals, images, etc. GANs accomplish this with two separate models, 
the generator 𝐺𝐺 and the discriminator 𝐷𝐷 [15]. The generator takes in the sample 𝑧𝑧z and produce a fake sample 
output that imitates the real sample 𝑥𝑥. Then, both the fake sample output and 𝑥𝑥 are inputted into the discrimi-
nator, which outputs a probability of the fake sample being part of the target distribution. When the model is 
training, 𝐷𝐷 learns to find more features in the target distribution, and 𝐺𝐺 updates its parameters to imitate more 
on the target distribution. This is done through an adversarial minimax game, represented by the equation  
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𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺

 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (1) 
 
where 𝑧𝑧 is a random noise vector, 𝐺𝐺(𝑧𝑧) is the fake sample, 𝐷𝐷(𝑥𝑥) is the discriminator’s estimate of whether the 
real sample 𝑥𝑥 is part of the target distribution, and 𝐷𝐷(𝐺𝐺(𝑧𝑧)) is the discriminator’s estimate of whether the fake 
sample is part of the target distribution. Through this process, the model will be able to understand the under-
lying structure of the target distribution and effectively reproduce samples based on this structure. 

However, one problem with GANs is that they can suffer from vanishing gradients and not converge 
fully to model the target distribution [16]. Gradient vanishing happens when the gradients of the loss functions 
of the discriminator and generator become zero at local minimums and do not continue to learn (in the adver-
sarial sense, this is equivalent to a local Nash Equilibrium [18]). The main workaround for gradient vanishing 
was made by Goodfellow et. al [17] by adding a non-saturating loss of −log (𝐷𝐷(𝐺𝐺(𝑧𝑧)), which is used today in 
GANs, but still doesn’t entirely fix the issue. If 𝐷𝐷(𝐺𝐺(𝑧𝑧)) approaches 0, then the non-saturating loss will increase 
tremendously and cause gradient explosion, which is as detrimental to the model training as gradient vanishing 
[16]. 
 

CoulombGAN 
 
To combat gradient vanishing, CoulombGANs represent the real and fake samples as a negative charge and 
positive charge respectively in an electric field, where the loss function is represented by the electric potential 
between the samples [18]. In an electric field, the potential is minimized when two charges are at a distance 
zero away from one another, and there are no local minimums, so in the CoulombGAN, there would be no local 
Nash Equilibrium and no gradient vanishing. Unterthiner et al. [18] defines 𝑝𝑝𝑥𝑥(𝒂𝒂) as a model density and 𝑝𝑝𝑦𝑦(𝒂𝒂) 
as a target density for sample 𝒂𝒂 and as the difference in these densities. Analogous to the electric potential 
function 𝑄𝑄

4𝑟𝑟𝑟𝑟𝜀𝜀0
, they also proposed the function that calculates the potential between sample 𝒂𝒂 and sample 𝒃𝒃 as 

follows: 
 

Φ(𝒃𝒃) = ∫ 𝜌𝜌(𝒂𝒂)𝑘𝑘(𝒂𝒂,𝒃𝒃)𝑑𝑑𝒃𝒃, 𝑘𝑘(𝒂𝒂,𝒃𝒃) =
1

�(||𝒂𝒂 − 𝒃𝒃||)2 + 𝜖𝜖2
𝑑𝑑  (2) 

 
  
where 𝑘𝑘(𝒂𝒂,𝒃𝒃) is the kernel function analogous to 𝑟𝑟 of the electric field potential function, 𝜖𝜖 is to introduce 
nonlinearity into the model to achieve more accurate results, and 𝑑𝑑 defines the dimensionality of the kernel. 
 In the proposed method we use the CoulombGAN architecture and apply it to speech denoising by 
applying the following loss functions for the generator and discriminator respectively:  
 

ℒ𝐷𝐷(𝐷𝐷;𝐺𝐺) =
1
2
𝐸𝐸𝑝𝑝𝑎𝑎�(𝐷𝐷(𝒂𝒂) −Φ�(𝒂𝒂))2� (3) 

ℒ𝐺𝐺(𝐺𝐺;𝐷𝐷) = −
1
2
𝐸𝐸𝑝𝑝𝑧𝑧 �𝐷𝐷�𝐺𝐺(𝒛𝒛)��  (4) 

 

where Φ
^

(𝒂𝒂) is the batched potential function. CoulombGANs work by using batches to compute a batched 
potential function, so that over time, the average of these potential functions converges to the overall potential 
function Φ(𝒂𝒂) for sample 𝒂𝒂. 
 

Method 
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Model Structure 
 
Our model structure was inspired by Hifi-GAN and builds on previous work involving generative adversarial 
networks in denoising speech systems. However, there are two key differences between the models: Hifi-GAN 
uses a Mel-Spectrogram Discriminator, while our model does not, and our model uses CoulombGAN loss func-
tion. This is because we found that the Mel-Spectrogram discriminator did not have a significant impact on the 
denoising effort but increased training time for the model.  The model begins with the generator, which is the 
enhancement network that imitates the clean speech target distribution. The generator consists of a WaveNet, 
which has shown success in removing speech artifacts in previous works. In the WaveNet, several causal filters 
and dilated convolutions allow for receptive fields to grow exponentially, which yields better removal of arti-
facts [19]. Next, we pass the generated sample into a PostNet, which has been able to improve speech quality 
before samples are passed into the discriminator [20]. Our PostNet involves six 1D convolutional layers, each 
with 256 layers, size 64 kernel, and a sigmoid as an activation function. PostNet allows the generator to generate 
signals without worrying about creating any potential noise artifacts. Finally, we pass the signal into the dis-
criminator, which contains two 1D grouped convolutional layers to reduce the number of parameters, and a 
mean pool to determine whether the inputted signal is real or fake. The discriminator we used is a waveform 
discriminator, because previous research has shown that waveform discriminators have been successful at re-
moving background noise [14]. The output of the discriminator is passed into the CoulombGAN loss functions 
for both the generator and discriminator, which calculates the batched potential and updates the parameters of 
each component. 

 

 
Figure 1. Block Diagram of the Hifi-GAN model. 
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Figure 2. Block Diagram of the Hifi-CoGAN model. 
Dataset 
 
To train the CoulombGAN model, one needs both a noisy signal and its corresponding clean signal, as the GAN 
must compare both to identify the structure of the clean signal and generate accurate samples. However, large 
amounts of training data with clean and noisy signals are difficult to obtain. Instead, we obtained the clean 
signal through single-channel speech recordings and artificially added noise to create the noisy signal pair. This 
allowed us to add different kinds of noise to the clean signal and measure the extent of denoising by the model. 

We trained the CoulombGAN model using the Microsoft Scalable Noisy Speech Dataset (MS-SNSD), 
which contains 27500 clean signals and 26 different background noise types (air conditioning, babble, munch-
ing etc.) sampled at 16 kHz. [21]. We chose 16kHz mono speech signals, as they represent the most used re-
cording format for voice communication applications. We removed all noise types that had less than 10 record-
ings because we wanted to ensure that the model can generalize to all recordings of that specific noise type, 
reducing the number of noise types to 10. We also included additive white noise as a noise type to test the 
model’s ability to denoise not only narrowband noise (such as the Air Conditioner and Copy Machine noise 
types) but also broadband noise. As a result, our dataset contained 155 noise signals comprising 11 noise types. 
To create the dataset of clean and noisy signal pairs, we batched 155 clean signals and combined each with a 
randomly chosen noise signal. This was done at three levels of SNR: 10 dB, 20 dB, and 30 dB, resulting in a 
dataset with 82,500 signal pairs. If the noise component was longer than the clean signal, then we truncated the 
noise component to end where the clean signal ends. 
 
Training 
 
Using the created dataset, we passed in each batch of clean and noisy signal pairs into the model. For the first 
100K iterations, we trained the generator to generate clean signals that at least resemble the target distribution 
at a learning rate of 0.0002. This was done to avoid gradient diminishing, because if we trained the discriminator 
at the same time as the generator, there is a possibility that the discriminator becomes too successful and dis-
criminates all fake samples before the generator learns the structure of clean signals. Next, we used the PostNet 
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to remove any speech artifacts that could have been created during generation while also cleaning up the signal 
for another 100K iterations at a learning rate of 0.0001. Finally, we used the discriminator to fine tune the 
generator for 500K iterations at a learning rate of 0.0001. 

During the training process, the discriminator and generator learned by Equation 3 and Equation 4 
respectively, which relies on the kernel function to measure the influence between the clean and noisy samples. 
We decided to use the kernel function with d=3, which has been shown to train smoothly without oscillations 
and achieve accurate results [18]. 
 

Results 
 
To measure the accuracy of our model on the signals from the MS-SNSD dataset, we use the Short-Term Ob-
jective Intelligibility (STOI) and Perceptual Evaluation of Speech Quality (PESQ) metrics. These are the most 
used metrics in denoising speech systems. We measured the STOI and PESQ of signals at different SNR values 
to evaluate the model’s ability to adapt to different noise levels. Table 1 shows the STOI and PESQ values for 
all signals at SNRs of 10 dB, 20 dB, and 30 dB (higher is better). Our model has been able to achieve better 
denoising results for higher SNR, but there are still improvements to be made for lower SNRs. 
 
Table 1. Objective metrics for all generated signals from the MS-SNSD dataset. 
Type of Noise Signal STOI – Hifi-GAN STOI – Hifi-CoGAN PESQ – Hifi-GAN  PESQ – Hifi-CoGAN 
Clean 1.00 1.00 4.36 4.36 
Noisy 0.927 0.927 1.92 1.92 
10 dB 0.935 0.937 2.06 2.09 
20 dB 0.945 0.954 2.14 2.25 
30 dB 0.957 0.965 2.39 2.44 

 
We also evaluated the model over the different types of noise added to each clean signal through the 

objective metrics. Table 2 shows the STOI and PESQ values for signals of each noise type. The model was best 
at removing noise from the copying machine noise type, as it had the highest STOI and PESQ. On the other 
hand, the model was unable to significantly remove white noise, with the lowest STOI and PESQ, showing that 
there are still improvements to be made for denoising broadband signals (such as white noise). 
 
Table 2. Objective Metrics for each noise type. 

Noise Type STOI – Hifi-GAN STOI – Hifi-CoGAN PESQ – Hifi-GAN PESQ – Hifi-CoGAN 
Air Conditioner 0.960 0.966 2.35 2.38 
Airport Announcements 0.954 0.959 2.24 2.28 
Babble 0.948 0.961 2.27 2.33 
Copy Machine 0.951 0.968 2.2 2.42 
Munching 0.945 0.963 2.22 2.35 
Neighbor Speaking 0.945 0.958 2.21 2.31 
Shutting Door 0.952 0.944 2.14 2.08 
Squeaky Chair 0.951 0.965 2.16 2.38 
Typing 0.951 0.949 2.15 2.13 
Washing Machine 0.945 0.951 2.19 2.24 
White Noise 0.900 0.888 2.03 1.96 
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Discussion 
 
The observed performance increase over Hifi-GAN can be attributed to a lack of local Nash Equilibriums, 
which prevents gradient vanishing. As such, the use of the CoulombGAN loss function helped better represent 
the target distribution of clean signals and achieve better results. From the objective metrics, the model denoised 
best on narrowband signals such as the Copy Machine and Air Conditioner. This is most likely because both 
types of signals have limited range of frequencies and unique noise signatures, so both the generator and dis-
criminator recognize them during training. On the other hand, the model did not perform as well on white noise 
because, both the generator and discriminator may not recognize which frequencies contain white noise and 
which are part of the clean signal, so denoising broadband signals such as white noise has been much more 
difficult for the model. Additionally, the model achieved better results on higher SNR values, with a 3% im-
provement in STOI for 30 dB compared to 10 dB. This is to be expected, as a 10 dB SNR has much more noise 
in the overall signal compared to a 30 dB SNR, so the frequencies in the clean signal are much less pronounced. 
As a result, it becomes harder for the generator and discriminator to separate the two and generate clean signals. 

One way to improve the model would be to add more components, such as an autoencoder, converting 
the model into an Energy Based GAN (EBGAN) or a Boundary Equilibrium GAN (BEGAN). EBGANs work 
by using an autoencoder as the discriminator, where the discriminator loss is represented instead with a recon-
struction loss that allows for multiple targets in the target distribution [22]. In the speech denoising context, this 
would equate to a better representation of the clean signals and better results in terms of the objective metrics. 
BEGANs are similar to EBGANs, but they use a Wasserstein loss to measure the convergence of the model to 
the target distribution, which could further improve generated signals’ representation of clean signals [23]. 
Finally, all the signals used to train the model have been at a sampling rate of 16 kHz, whereas high-fidelity 
speech can have a sampling rate of 44.1 kHz or 48kHz. 
 
 
 
 

Conclusion 
 
The results from objective metrics such as STOI and PESQ show that using our Hifi-CoGAN model has out-
performed Hifi-GAN which is considered state of the art with a narrowband noise. However, this architecture 
does not significantly denoise white noise, so further research must be done for similar broadband signals. One 
area to target in the future could be real-time speech denoising, which could have significant applications in 
communication systems. 
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