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ABSTRACT 

Spontaneous otoacoustic emissions have long been modeled using self-excited, nonlinear oscillators. The van 
der Pol oscillator is a common choice, as many of its properties reflect those of SOAEs: both can begin oscil-
lation in the absence of a direct stimulus, both have narrow frequency bands, and both become stable over time, 
to name a few. Yet such an idealized equation cannot have a one-to-one correspondence with SOAEs in all 
factors. Many previously used mathematical and circuit models lack the addition of noise to more accurately 
show how real world SOAEs operate in an organism’s ear, where noise from the environment is almost entirely 
unavoidable. The inclusion of uniformly distributed noise in both numerical and circuit models of the van der 
Pol oscillator was studied to determine whether these models can still accurately explicate SOAEs when mod-
ified to be more realistic. In both cases, both models retained the attributes of real world SOAEs despite the 
addition of noise, allowing them to serve as more useful and accurate models of the phenomenon. 

Introduction 

While most people think of the ear as a receptor for auditory signals, many are unaware of its ability to produce 
sounds, which are referred to as otoacoustic emissions. These emissions are produced in the cochlea as a by-
product of an active amplification process in the cochlea. OAEs can be categorized into three major types: 
evoked OAEs, distortion product OAEs (DPOAEs), and spontaneous OAEs (SOAEs), which are the focus of 
this study’s research. Unlike the other two types of OAEs, spontaneous otoacoustic emissions do not require a 
stimulus to occur. 

Within the inner ear sits the cochlea, a snail shell shaped structure responsible for translating vibrations 
of the eardrum into electrical signals. Vibrations in the basilar membrane, which separates the two chambers of 
fluid inside the cochlea, cause the outer hair cells also within the cochlea to lengthen and shorten, which me-
chanically amplifies softer sounds that are converted into electrical pulses by the inner hair cells. Conversely, 
the outer hair cells change their lengths when they detect electrical signals, creating a feedback loop analogous 
to that of a microphone and speaker when the two get too close or the gain is turned up too high, producing a 
shrill tone. 

SOAEs are in fact not limited to cochlear ears. Any nonlinear active process, such as the vibrations of 
the membrane (tympanum) in tympanal hearing, will produce SOAEs. In other words, any ear that involves 
nonlinear oscillations of some structure may spontaneously produce sounds, regardless of the presence of a 
cochlea. 

There are several defining characteristics that can be found in SOAE lines: narrow bandwidth, asym-
metry, and stability over time. A narrow bandwidth indicates the purity of tone of SOAEs, that the sounds 
produced in SOAEs are more like a single note than a muddy smattering of noise. These pure tones present as 
peaks on frequency distribution plots and have asymmetrical Lorentzian distributions, specifically that the cen-
ter of the peak is shifted more towards the higher frequency end. Some have suggested using SOAEs as an 
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alternative to fingerprints for identification, as SOAE frequencies are both extremely stable and unique to the 
individual.  

The stability of SOAEs is due to the fact that SOAEs behave like limit cycle oscillators. A limit cycle 
oscillator does not require a driving force, meaning it can be started simply with noise. Regardless of what the 
initial conditions of the oscillator are, the pattern of oscillation will eventually stabilize to a certain amplitude. 
The van der Pol oscillator is the simplest nonlinear oscillator that exhibits a limit cycle, another reason it was 
chosen as the baseline for modeling SOAEs.  

Another characteristic of the SOAE nonlinear oscillator is the production of odd harmonic frequencies 
in its frequency spectrum. Due to the complexity of the human cochlea, it is unlikely that human SOAEs will 
produce a spectrum of only odd harmonic frequencies, as many factors unrelated to SOAEs may influence the 
spectrum. A less complex organism however, such as an insect, may produce the more simplified spectrum of 
solely odd harmonics as seen in the numerical simulation of the van der Pol equation. A paper by Natasha 
Mhatre and Daniel Robert analyzed data of cricket SOAEs. Specifically, their Figure 1c, which traces the fre-
quency spectrum of 12 subjects, shows prominent odd harmonics at 1, 3, and 5 kHz, a result that reflects the 
frequency spectrum from the our mathematical model of SOAEs exceptionally well. 
 

Background 
 
Astrophysicist Thomas Gold first proposed (1948) that the ear generates sounds based on its extreme amplifi-
cation and the known oscillations that result from feedback amplifiers. However, unable to detect the sounds 
generated by the ear using the equipment he had, the discovery was not made until 1978 when David Kemp 
succeeded. Soon thereafter, detection of otoacoustic emissions became the standard method for assessing hear-
ing in newborns. However, in its most basic form, a Van der Pol oscillator cannot perfectly reflect data taken 
from real world SOAE analysis, which include the many nuances of the imperfect world. Thus, many efforts 
have been made to extend the capabilities of a simple Van der Pol oscillator so a more accurate representation 
of spontaneous otoacoustic emissions can be achieved. A study modeling lizard SOAEs found that the addition 
of Gaussian (normally distributed) noise created new peaks in certain frequencies while also making the tones 
of the resonant frequencies less pure, as the range of each peak in the spectrum was widened.  
 
Research Question 
 
Our specific question for targeted research was as follows: how does adding uniformly distributed noise to both 
the mathematical and circuit models of SOAEs affect their accuracy with regards to real world SOAEs? 
 

Methods 
 
Circuit Simulation 
 
We utilized the circuit simulation to explore SOAEs from a hands-on perspective as an alternative to real world 
data from SOAEs. 

The circuit simulation we used was created by Paul Falstad, who has created several other simulations 
with a significantly wider range of capabilities than those typically found in a high school classroom. For this 
study, his circuit simulator, which includes circuit elements of almost every variety, was used to tweak and 
refine a simple harmonic oscillator to eventually arrive at a circuit for the van der Pol oscillator. Several varia-
tions of van der Pol circuits exist, though in nearly all of them, both a capacitor and an inductor are utilized. 
We first settled on a seven element LC oscillator made up of a noise generator, three resistors, a capacitor, an 
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inductor, and a tunnel diode, but found that it was not nonlinear enough to describe SOAEs. Specifically, the 
log spectrum of frequencies for the LC oscillator showed peaks at both the odd and even multiples of the fun-
damental frequency instead of just the odd multiples, which was what we saw in the cricket SOAE data. There-
fore, we turned to the relaxation oscillator instead, as it was much more nonlinear and produced only the odd 
harmonics in its log spectrum plot. 

Our final circuit model consisted of five electrical elements: a noise generator, two resistors, an induc-
tor, and a tunnel diode. The noise generator acts as both the voltage source and the source of uniformly distrib-
uted, or Gaussian, noise in the system. Within our model, the DC offset (essentially the voltage) was set to 1.5 
V and maximum voltage for noise varied between 0 and 600 mV to test for a range of amounts of noise. Two 
resistors were added to the circuit, one of which was connected in series with the voltage source and the other 
was connected to a ground and in parallel to the noise generator. Next added in parallel and attached to a ground 
was an inductor as a means of storing the magnetic energy of the system. Finally, the self-exciting nature of the 
circuit is due to the tunnel diode, a type of diode that exhibits the quantum qualities of “tunneling” to allow for 
what is essentially negative resistance. Diodes act as a sort of one way switch, allowing current to flow in one 
direction but not the other, and they require a minimum threshold voltage to operate properly. A tunnel diode 
has the additional property that when a voltage within a certain range is applied, an increasing voltage induces 
a decreasing current, resulting in the system oscillating without an external force or voltage. Since resistance is 
the quotient of voltage and current, the negative slope of the tunnel diode's Voltage vs Current plot represents 
a negative resistance that cancels circuit resistance, facilitating self-oscillation. An image of the circuit used is 
shown below. 
 

 
 

Figure 1. Circuit model configuration using Falstad Circuit Simulator. The resistances of the resistors are shown 
in ohms. 
 
Numerical Simulation 
 
The van der Pol equation is a nonlinear differential equation. For algebraic equations, the solution is a number. 
For a differential equation, the solution is a function. The vast majority of nonlinear differential equations how-
ever do not have closed form solutions. Therefore, they can only be solved numerically with step-by-step values, 
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making nonlinear differential equations great to be solved via a spreadsheet, which can crunch a large amount 
of numbers.  

One commonly used technique of solving nonlinear differential equations is to employ the Euler 
method, which essentially consists of plugging increasing values of time into update equations and plotting the 
numerical answers to those results. While the Euler method is simple and straightforward, using large time steps 
can lead to a lot of deviation. In the case of the Euler method, which is a first order method, the error introduced 
in each step is proportional to the size of each step squared, and thus a larger step size will generate more errors. 
In 1980, by a pure stroke of luck, a high schooler exchanged the position update statement and the velocity 
update statement in her computer code for the Euler method, believing she had made an error when her solution 
began to diverge after 14 iterations. This simple switch of using the new velocity (that is, the velocity that would 
usually be calculated in the next step of the Euler method) instead of the old one in the position update statement 
produced results that were significantly more stable for a longer period of time. Later named the Euler-Cromer 
method, this was the method implemented in our spreadsheet. 
 
Equations Utilized in the Excel Spreadsheet 
The van der Pol equation looks as follows: 
 

𝑎𝑎 − 𝜇𝜇(1 − 𝑥𝑥2)𝑣𝑣 + 𝜔𝜔2𝑥𝑥 = 0, 
 
where v is the rate of change of position with respect to time (also known as velocity) and a is the rate of change 
of velocity with respect to time (also known as acceleration). Position is represented by the variable x. 𝜔𝜔 con-
trols the frequency, and 𝜇𝜇 controls the amount of damping: a larger value of 𝜇𝜇 indicates a more nonlinear 
equation. The equation for velocity is 𝑣𝑣 = Δ𝑥𝑥

Δ𝑡𝑡
, where Δx is defined as 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜. Rearranging the equation 

results in 
 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣∆𝑡𝑡. 
 
For the Euler method, the 𝑣𝑣 in the above equation would be the old velocity, but in the Euler-Cromer method, 
that would be new velocity. Acceleration can be described as 𝑎𝑎 = Δ𝑣𝑣

Δ𝑡𝑡
 and can be rearranged to form 

 
𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑎𝑎∆𝑡𝑡, 

 
giving us the update statements for both position and velocity. The update equation for velocity, however, 
requires the value of the acceleration, which can be defined as 
 

𝑎𝑎 =  𝜇𝜇(1 − 𝑥𝑥2)𝑣𝑣 − 𝜔𝜔2𝑥𝑥 
 
by rearranging the van der Pol equation.  

The above equations were utilized in the Excel spreadsheet to create the different columns of values 
later used to create the plots. The first column of the spreadsheet contained increasing values for the time, with 
the difference between cells being 0.05 seconds. A smaller time increment had to be chosen to allow for a 
smoother and more accurate plot, as too large a time interval would result in more deviation. The fast Fourier 
transform (FFT) requires that the number of samples be a power of 2. 1024 samples meet that requirement and 
provides sufficient frequency resolution as the Nyquist sampling theorem limits frequency resolution to no finer 
than half the sampling rate. Column E held the values for the velocity, where the initial velocity was set to 
0.100, and each subsequent cell was calculated with the velocity update equation.  
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To obtain the FFT frequency, FFT magnitude, and FFT complex values, the Fourier transform function 
of the Excel spreadsheet was utilized. To put into simple terms, the Fourier analysis breaks a whole down into 
its component frequencies, like a prism would break white light down into its component frequencies, which 
are the different colors of a rainbow. 
 

Results 
 
The following figures were taken from the circuit and numerical models and were analyzed for narrow band-
width, asymmetry, and stability over time. 
 

 
 
Figure 2. Velocity vs. Position plots from the numerical model on Excel Spreadsheet. Figure 2A shows the plot 
when 𝜇𝜇 = 0, 2B when 𝜇𝜇 = 1, 2C when 𝜇𝜇 = 2, 2D when 𝜇𝜇 = 3, 2E when 𝜇𝜇 = 4, 2F when 𝜇𝜇 = 5, 2G when 𝜇𝜇 =
6, 2H when 𝜇𝜇 = 7, 2I when 𝜇𝜇 = 8, 2J when 𝜇𝜇 = 9, and 2K when 𝜇𝜇 = 10. Starting in Figure 2B, the limit cycle 
becomes apparent as the data points begin at the origin and fall into the parallelogram-like shape cycle. As 𝜇𝜇 
was increased, the points fell into the limit cycle quicker. Regardless of the initial starting point on the phase 
diagram, the solution traced out by the vector field (not visible) will eventually stabilize within the limit cycle. 
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Figure 3. Position vs. Time plots from the numerical model on Excel Spreadsheet. Figure 3A shows the plot 
when 𝜇𝜇 = 0, 3B when 𝜇𝜇 = 1, 3C when 𝜇𝜇 = 2, 3D when 𝜇𝜇 = 3, 3E when 𝜇𝜇 = 4, 3F when 𝜇𝜇 = 5, 3G when 𝜇𝜇 =
6, 3H when 𝜇𝜇 = 7, 3I when 𝜇𝜇 = 8, 3J when 𝜇𝜇 = 9, and 3K when 𝜇𝜇 = 10. As 𝜇𝜇 was increased to increase the 
damping, the plots began to deviate from a sinusoidal shape and into asymmetrical curves, a display of the 
fast/slow dynamic system. Vertical sections of the plots indicate faster velocities characteristic of non-linear 
oscillation. 
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Figure 4. Magnitude vs. Frequency plot taken from numerical model on Excel Spreadsheet. The fundamental 
frequency occurs at 0.15624 Hz, and successive peaks occur at the 3rd and 5th harmonics of the fundamental 
frequency. 
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Figure 5. Plots taken from the Falstad Circuit Simulator. (From left to right) Current vs. Time and Voltage vs. 
Time plot for the tunnel diode, Current vs. Voltage plot for the tunnel diode, and Voltage vs. Time plot for the 
output. Figure 5A shows plots when the noise has a maximum voltage of 0 mV, Figure 5B when the voltage of 
noise is 150 mV, Figure 5C when voltage of noise is 300 mV, Figure 5D when the voltage of noise is 450 mV, 
and Figure 5E when the voltage of noise is 600 mV. As noise was increased, the Voltage vs. Time plot fluctuated 
but maintained a nonlinear shape as seen in the numerical model.  
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Figure 6. Magnitude vs. Frequency plots taken from the Falstad Circuit Simulation when voltage of noise is 
600 mV. The highest peaks occur at roughly 40 Hz, the fundamental frequency, and 120 Hz, the 3rd harmonic 
of the fundamental, following in line with the expected odd harmonics found in SOAEs. 
 

Analysis 
 
Plots of both the circuit model and mathematical model reflect the three major characteristics of SOAEs: narrow 
bandwidth, asymmetry, and stability over time. Peaks in the Magnitude vs. Frequency plots for both models are 
very narrow, resembling more a point than a plateau. In correspondence to the asymmetry of SOAEs, these 
peaks all lean more to the left than to the right, as in, the maximum of each peak is closer to the left side than 
the right side (this is much more apparent in the spreadsheet model’s plots but exists as well in the spectrums 
for the circuit model). In addition, Figure 4 displays the fundamental frequency at 0.15624 Hz as well as smaller 
peaks of decreasing size at odd multiples of that main peak frequency (0.46872 Hz, 0.78120 Hz). The same is 
true for the frequency spectrums in the circuit model, though the numbers are less perfectly rounded because 
the plot is not static. 

As the noise was increased in the circuit model, the Voltage vs. Time plots in Figure 5 became less 
regular, having more fluctuations that when close together looks like the thickness of the line has increased. 
This phenomenon is not necessarily germane to modeling SOAEs however, as in nearly any circuit the voltage 
source becomes less stable with the addition of noise. 

Within the spreadsheet, as 𝜇𝜇 was increased (which determines the nonlinearity of the equation), the 
Position vs. Time plot began to deviate from a standard sinusoidal shape, instead more closely resembling the 
Voltage vs. Time plot taken from the circuit simulation. In our case, Position refers to the same thing as Voltage, 
since in both cases they are replacing the 𝑥𝑥 variable in the Van der Pol equation. The effect of increasing 𝜇𝜇 on 
the Velocity vs. Position plot (or the phase plot) results in the following interesting changes. When 𝜇𝜇 is set to a 
value greater than zero, the phase plot begins to display characteristics pertaining to a limit cycle oscillator. As 
time increases, the line of the plot falls into an irregularly elliptical shape and remains on this perimeter forever. 
For greater values of 𝜇𝜇, the shape of the limit cycle was less and less regular, but the line of the plot falls into 
the limit cycle earlier. Though our spreadsheet only tests for one set of initial conditions, because we know the 
Van der Pol oscillator is a limit cycle oscillator, this same phenomenon would occur regardless of the starting 
point for the plot. The plot therefore serves as proof for the stability of our mathematical model over time, 
another prominent feature of SOAEs. The stability for our circuit model is less easily discerned, as the simula-
tion is animated to be not static, but after the simulation ran for about a minute, the frequency spectrum stabi-
lized enough so the fundamental frequencies and odd harmonics could be distinguished from the constantly 
fluctuating noise. 
 

Conclusion 
 
Our data showed that despite the addition of uniformly distributed noise to both the circuit and mathematical 
models, they retained their ability to accurately reflect real world SOAEs, specifically those of lower organisms 
like crickets. Specifically, the distinguishing properties of SOAEs, odd harmonics, narrow bandwidth, and 
waveform asymmetry, were all captured by van der Pol oscillator circuit and numerical simulations. In general, 
the confirmation that these two representations of Van der Pol oscillators (circuit and numerical), continue to 
effectively model SOAEs even with the addition of noise, should prove helpful to SOAE researchers in forming 
hypotheses and designing experiments. 
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Discussion 
 
In recent years, researchers have been looking into the real world applications of SOAE properties. As men-
tioned briefly in the introduction, one such application is in biometrics, to use the stable frequencies of an 
individual’s SOAEs as a sort of fingerprint identification. The spreadsheet model we tested in this study could 
be useful in developing software that distinguishes between random noise and the true frequencies as generated 
by SOAEs. Additionally, studies have revealed a relationship between Idiopathic Sudden Deafness and the lack 
of presence or strength of SOAEs in subjects, specifically that as hearing returned to the subjects, their SOAEs 
could be detected once more. The models tested in this study could be utilized to develop possible treatments 
for hearing loss by manipulation of SOAEs in the human ear. In general, the results as detailed in the paper 
serve as a baseline to which SOAE data from experimentation can be compared and open the door to both 
hardware and software development that exploit the key properties of SOAEs. 
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