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ABSTRACT 

In cruciferous vegetables such as broccoli, sulfur-rich isothiocyanates, most notably sulforaphane (SFN), has shown 
anti-cancer properties, including cell cycle regulation, inducing apoptosis, and metastasis. Sulforaphane is a natural 
antioxidant that regulates several signal transduction pathways controlling oxidative stress, cellular defense, and car-
diovascular disease. This paper attempts to elucidate the most drug-like SFN derivative through computational 
methods, including molecular docking, Quantitative Structure-Activity Relationship (QSAR), and absorption, distri-
bution, metabolism, and excretion (ADME) analysis. From our studies, we can conclude that phenylethyl isothiocy-
anate (PEITC) has the most therapeutic potential out of a small set of 7 SFN derivatives. It is a confirmed lead-like 
compound by testing QSAR descriptors, notably the Dragon consensus drug-like score and lead-like score 2. PEITC 
also proves to be the most bioavailable derivative, as it is predicted to have high gastrointestinal absorption (GIA) 
and blood-brain barrier (BBB) permeability. In addition, it is in the optimal range for 5 out of 6 bioavailability prop-
erties proposed by the Abbot Bioavailability Score.1 Lastly, from docking studies, PEITC had the highest average 
binding affinity overall, meaning that it holds a vital role in cancer prevention through molecular mechanisms.  

Introduction 

In the pursuit of finding novel cancer treatments, researchers have explored different methods such as radiation ther-
apy, immunotherapy, hormone therapy, and the most widely researched: chemotherapy. The use of natural products 
in cancer therapy has increased over the past few decades as they are considered inexpensive, applicable, and acces-
sible compared to conventional chemotherapy agents. Natural products and antioxidants are also known to be more 
environmentally friendly and have fewer toxic side effects.  

Sulforaphane (SFN) is a sulfur-rich isothiocyanate found in cruciferous vegetables. It is a highly researched 
isothiocyanate derived from the hydrolysis of glucosinolate glucoraphanin by an enzyme called myrosinase. SFN is 
known for its high chemical reactivity caused by the electrophilicity of the central carbon of the isothiocyanate (—
NCS) group. All glucosinolates have basic structures consisting of a β-D-thioglucose group, a sulfonated oxime group, 
and an amino acid-derived side chain.2  

Multiple in-vitro and in-vivo studies have shown sulforaphane’s chemopreventive activity against several 
types of cancer through the suppression of cellular proliferation, metastasis, angiogenesis, and other hallmarks of 
cancer.3 Additionally, SFN has been found to possess antioxidant, antimicrobial, anti-aging, neuroprotective, 
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antidiabetic, and anti-inflammatory properties.4 Its wide range of therapeutic properties has led it to become one of 
the most widely studied isothiocyanates.  

  
Figure 1. Conversion of Glucoraphanin to Sulforaphane. Image adapted from Matusheski et al.5. 

Despite extensive research concerning SFN and its properties, limited information is available regarding SFN’s role 
in signaling pathways. It is widely accepted that SFN plays a role in KEAP1-NRF2 signaling.6 The transcription factor 
NRF2 is a master regulator of cell survival responses to endogenous and exogenous stressors. This master regulator 
controls many essential pathways, such as cellular antioxidant defense. It induces NRF2/ARE/Prdx6 activity during 
aging, oxidative stress, and while protecting against cardiovascular disease.7  

SFN also regulates several other signal transduction pathways. Many other prospective targets have been 
noted in literature, such as nuclear factor kappa B (NF-κB), phosphatidylinositol-3-kinase (PI3K), protein kinase B 
(Akt), and others have been noted.8 Other targets include MMPs 2 and 9, DNMT1, KEAP1, and HDACS. MMPs 2 
and 9 are involved in the invasion and metastasis of malignant cancer cells and are known to be regulated by MAPKs, 
including ERK1 and 2, P-38, and SAPK/JNK, suggesting that MAPKs can be a potential target for SFN.9 Another 
potential target for SFN is the DNMT1 enzyme, which is often overexpressed in many cancers, resulting in abnormal 
patterns of DNA methylation.10 The KEAP1 protein is a target of SFN as well. When KEAP1 is inhibited, it will 
prevent NRF2 degradation by the ubiquitin-proteasome system, increasing NRF2 expression levels. This results in the 
accumulation of NRF2 in the nucleus, where it induces the transcription of antioxidative and cytoprotective genes, 
leading to activation of the cell defense system.11 Finally, SFN has been shown to inhibit HDACS 1-4 and 6, a common 
overactivated and expressed enzyme in cancers. The inhibition of HDACS can reactivate NRF2 expression, which 
prevents the growth of cancer cells.12  
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Figure 2. Structure of Sulforaphane and derivatives. 
 

The increasing applicability of SFN has subsequently led to a correlating interest in the metabolites of SFN 
and related isothiocyanate phytochemicals. Metabolites of SFN include sulforaphane glutathione (SFN-GSH), sul-
foraphane cysteine-glycine (SFN-CG), sulforaphane cysteine (SFN-Cys), and sulforaphane N-acetylcysteine (SFN-
NAC). Related compounds include sulforaphene (SFE) and phenylethyl isothiocyanate (PEITC).  
 

Background 
 
Molecular Docking  
 
Molecular Docking is the in-silico study of how molecular structures interact with other molecular structures. This 
includes protein-protein interactions, protein-nucleic acid interactions, and most commonly, protein-small molecule 
interactions. Docking is a frequently used process in drug design screening, as it can predict the binding affinity of 
any compound with a protein readily available in databases, such as the RCSB protein data bank.13 There are many 
web servers and software that can conduct molecular docking. A particularly efficient open-source software is Auto-
DockVina (ADV).14 ADV has a user-friendly interface and can swiftly predict binding affinities. In this study, molec-
ular docking by AutoDockVina was used to predict which proteins SFN and related compounds might interact with 
in-vitro. This information helps determine potential molecular pathways. Additionally, molecular docking was used 
to establish which small molecules, or ligands, had a higher chance of binding to a specified protein. From this, the 
biological activity of each compound was compared.  
SwissADME  
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SwissADME offers various helpful computational and molecular tools that allow users to gain a deeper in-
sight into drugs or molecules. ADME stands for Absorption, Distribution, Metabolism, and Excretion. Since our study 
targets sulforaphane for improving bioavailability, the most valuable tools on SwissADME were the chemical struc-
ture, bioavailability radar, and drug-likeness features. The Bioavailability Radar considers the lipophilicity, size, po-
larity, solubility, flexibility, and saturation of the drug to determine drug-likeness. Other descriptors like molecular 
weight (MW), molecular refractivity (MR), count of specific atom types, and polar surface area (PSA) can help de-
termine if the drug can cross the blood-brain barrier to reach the brain and to evaluate other ADME properties. Fur-
thermore, the drug-likeness feature allows us to determine if SFN could be an oral drug with respect to bioavailability. 
To determine if SFN can be an oral drug candidate, its drug-likeness would be determined from its structural and 
physicochemical inspections.15  
Quantitative Structure Activity Relationship (QSAR) 

QSAR computational modeling methods reveal relationships between chemical structure and biological ac-
tivity. With QSAR models, mathematical equations can investigate properties that may be relevant to drug design. 
Additionally, these models screen large libraries of compounds for optimal candidates for ADME properties, as stated 
above. Because of these characteristics, QSAR modeling is essential in the pharmaceutical industry.16 ADME and 
other properties calculated by QSAR software are called descriptors, and thousands have been reported. To create an 
adequate model, the correct descriptors must be chosen. In the software AlvaDesc, descriptors are grouped into blocks. 
These include constitutional indices, functional group counts, pharmacophore descriptors, and many more. In this 
study, drug-like indices were of particular interest. Two different types of scores can be calculated within the drug-
like indices block: drug-likeness and lead-like scores. Druglikeness scores are a qualitative concept that evaluates if a 
substance is potentially bioavailable. Lead-like scores use filters to determine if a compound has pharmacological 
activity.17 

 

Methods 
 
Avogadro and Orca 
 
First, each derivative was drawn in Avogadro V 1.2.0,18 a free molecule editor and visualizer. Then the geometry of 
each structure was optimized using an MMFF94 force field with 10,000 steps, steepest descent, and 10-e7 conver-
gence. After geometry optimization, Orca,19 an organic chemistry program, was used to conduct Density Functional 
Theory (DFT) optimizations. An orca input was generated using a B3LYP functional set, and the orca command was 
implemented using a Mac terminal. The output PDB files were used for molecular docking.  
AutoDockTools and AutoDockVina 

AutoDockTools20 was used to prepare the ligand and protein files. Ligand PDB files obtained from Avogadro 
were imported into AutoDockTools, where the ligand function was used to convert the file into a PDBQT format. To 
prepare each protein for docking, the PDB file was first obtained from RCSB Protein Data Bank13. After opening each 
protein in AutoDockTools, water molecules were removed while non-polar hydrogens and Gasteiger charges were 
added. Then each protein was converted to a PDBQT file using the macromolecule function. Each PDBQT file was 
opened using a text editor, and then charges were added to ions that required them. To complete docking by Auto-
DockVina,21 a configuration file was made. Each configuration file consisted of a ligand file name, protein file name, 
exhaustiveness of 16, and grid box parameters that included the coordinates of the entire protein to conduct blind 
docking. To run AutoDockVina, the vina command line was entered into an Ubuntu terminal along with the configu-
ration file for each docking run. The output was a PDBQT file that contained nine ligand conformations and a TXT 
file that contained the binding scores for each ligand conformation. One last additional step was taken here to ease the 
visualization process. A vina split command was run to split the output PDBQT file into nine separate files, each with 
a single conformer.  
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UCSF Chimera 
UCSF Chimera22 was used to view the protein-ligand complex and visualize potential hydrogen bonds be-

tween ligands and proteins.  
Discovery Studio Visualizer  

Discovery Studio Visualizer23 (DSV) was also used for non-covalent visualization. A protein-ligand complex 
was imported into DSV, and the 2-D diagram feature was used to view interactions such as Pi-Alkyl, Amide Pi-
Stacked, Pi Cation, Pi-Pi Stacked, Pi-Sulfur, Van Der Waals, and others. 
alvaDesc 

alvaDesc24 was used to obtain QSAR data for each derivative. First, the free web server cheminfo25 was used 
to generate a SMILES code for each derivative since they were not readily available on mainstream chemistry data-
bases. Then an online SMILES translator provided by NIH26 was used to convert each SMILES code into a Kekule 
MOL file. This process ensured the standardization of each compound. Next, each compound was loaded into al-
vaDesc, and basic drug-like indices were selected as the molecular descriptor of choice. 
SwissADME 
 SwissADME15 is an accessible web server that analyzes the absorption, distribution, metabolism, and excre-
tion (ADME) of chemical compounds to assess their drug-likeness. The same list of SMILES that were created earlier 
was entered into SwissADME.  
 

Results   
 
QSAR  
 
Two descriptors of interest were chosen: DLS_cons and LLS_02. DLS_cons (Dragon consensus drug-like score) are 
defined as the average of the seven drug-like scores (DLS_1 - DLS_7) provided by alvaDesc. These seven drug-like 
scores have been defined as the ratio between the number of satisfied rules and the total number of rules, represented 
by the equation LS=nRules/tRules, where tRules is the total number of rules and nRules is the number of satisfied 
rules. Drug-like indices evaluate qualitative properties to determine whether a compound is potentially bioavailable. 
Below is each DLS index.  

Drug Like Scores 
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face 
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DLS_
1 

≤ 5 ≤ 10 ≤ 500 ≤ 4.15 - - - - - - - - 

DLS_
2 

≤ 5 1 - 8 200 - 
450 

-2.0 - 
4.5 

1 - 9 ≤ 5 - - - - - - 

DLS_
3 

≤ 5 ≤ 10 200 - 
500 

-5.0 - 
5.0 

≤ 8 - -2 - 2 - - - - - 

DLS_
4 

≤ 5 2 - 10 78 - 
500 

-0.5 - 
5.0 

- - - 0.15 - 
0.8 

0.6 - 
1.6 

0.10 - 
0.45 

- - 
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DLS_
5 

- - - - - - - - - ≤ 0.4 0.10 - 
1.80 

-  

DLS_
6 

≤ 5 ≤ 10 ≤ 500 ≤ 5 ≤ 10 -  - - - - - ≤ 140 

DLS_
7 

- - - - ≤ 10 - - - - - - ≤ 140 

Table 1. Drug-like scores. Molecular descriptor provided by alvaDesc.  
Since DLS_cons is an average of the above indices, this index accurately portrays whether each sulforaphane deriva-
tive can become a drug.  

Figure 3. DLS_cons score for SFN and its derivatives and metabolites. A score of 1 indicates that a com-
pound is a good candidate to be a drug, whereas a score of 0 indicates that a compound will likely not be 

a drug. 
 
While drug-likeness evaluates bioavailability for compounds resembling existing drugs, the term "lead-like" is used 
for compounds possessing the structural and physicochemical profile of a quality lead. LLS indices are filters used to 
select those compounds qualified to be a lead in drug discovery. Typically lead compounds, compared to drugs, have 
lower molecular complexity, a smaller number of rings (nCIC), a smaller number of rotatable bonds (RBN), a lower 
MW and are more polar.17 The index LLS_02 is a lead-like score derived from the rules proposed by Monge et al27. 
and is based on the following eight rules.  

● H-bond donors ≤ 5 
● H-bond acceptors in ≤ 9 
● molecular weight MW ≤ 460 
● Moriguchi’s logP MLOGP in the range from –4.0 to 4.2 
● rotatable bond number RBN ≤ 10 
● number of rings nCIC ≤ 4 
● number of halogens nX ≤ 7 
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● total number of nN + nO ≥ 1 

 
Figure 4. LLS_2 score for SFN and its derivatives and metabolites. A score of 1 indicates that a com-

pound has lead-like properties, whereas a score of 0 indicates that a compound does not. 
SwissADME ] 
 SwissADME provides data on blood-brain-barrier (BBB) permeation and passive human gastrointestinal ab-
sorption (GIA), both of which are very important as these compounds must have sound absorption, have a low level 
of toxicity, and be orally bioavailable. Additionally, the website has other characteristics, such as Pgp substrate and 
bioavailability scores.   

ADME Properties 

Compound GI absorption  BBB permeant  Pgp Substrate Bioavailability Score  

SFN High No No 0.55 

SFE  High No No 0.55  

SFN-CG Low No No 0.55  

SFN-NAC Low No No 0.11 

SFN-GSH Low No Yes 0.11 

SFN-Cys Low No No 0.55 

PEITC High Yes No 0.55 

 
Table 2. Predicted ADME properties. Data retrieved from SwissADME  
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Figure 5. Bioavailability Radars of SFN, SFE, SFN-CG, SFN-NAC, SFN-GSH, SFN-Cys, and PEITC. 
Retrieved from SwissADME. 
Docking 
 With a thorough investigation of literature, 13 protein targets were selected. 

Protein Targets 

PDB Code  Description  Class  

3WNS28 Macrophage Migration Inhibitory Factor (MIF) Isomerase Inhibitor 

2J5E29 Epidermal growth factor receptor (EGFR) Transferase 

4LY130 Histone deacetylase 2 (HDAC2)  Hydrolase Inhibitor 

4CQ831 Dihydroorotate dehydrogenase (DHODH)  Oxidoreductase 

6DWN32 Human Cytochrome P450 1A1 (CYP1A1) Oxidoreductase 

5OMG33 p38alpha Transferase 

6RQ434 Mitogen-activated kinase 1 (ERK2) Signaling Protein 

6PYE35 Histone deacetylase 6 (HDAC6) Hydrolase 

4WXX36 DNA Methyltransferase 1 (DNMT1) Transferase  

4QHE37 Human apurinic/apyrimidinic endonuclease 1 
(APE1) 

Lyase 
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1JL038 Human S-Adenosylmethionine Decarboxylase 
(AdoMetDC)  

Lyase 

5FNU39 Kelch-like ECH associated protein 1 (KEAP1)  Transcription 

1WE140 Heme oxygenase-1 (HO-1) Oxidoreductase 

 
Table 3. Proteins selected for docking, with PDB code and class.  

Each SFN derivative was docked to each protein, and the docking score in kcal/mole was recorded. Note, the lower 
the docking score, the higher the binding affinity.  

Docking score (kcal/mol)  

Deriva-
tive/Protein 

3WN
S 
 

2J5E 4LY
1 

4WX
X 

5OM
G 
 

6RQ
4 

6PY
E 

4CQ
8 

4QH
E 

1JL0 6DW
N 

5FN
U 

1WE
1 

Aver-
age 

Deriv-
ative 
score  

SFN -4.7 -3.5 -3.7 -4.2 -4.1 -3.8 -3.8 -4.5 -4.0 -4.7 -3.8 -4.4 -4.4 -4.12 

SFE -5.0  -3.7 -3.6  -4.3 -4.8 -4.0  -4.3 -4.7  -4.3 -5.0  -4.8 -4.5 -4.7  -4.44 

SFN-CG -6.5  -4.4  -4.1  -5.2 -4.7  -4.6  -4.8 -5.5  -5.5  -6.0 -6.1  -5.9  -5.3 -5.28 

SFN-NAC -6.4  -4.3 -3.7 -4.9 -5.2  -4.9 -4.2 -4.3 -5.3 -5.9 -5.9 -6.0 -4.8 -5.06 

SFN-GSH -8.0 -4.9  -4.1  -5.6 -4.9  -6.0 -5.4 -4.9  -5.3 -6.5  -4.7 -6.0 -5.5 -5.52 

SFN-Cys -5.9 -4.3 -3.7 -4.7 -4.7 -4.4 -4.3 -3.9 -4.7 -5.5 -3.8 -5.5 -5.2 -4.66 

PEITC -6.1  -5.1  -4.8  -5.6 -6.6 -5.0  -6.5 -6.1  -5.4 -6.9 -6.8 -5.2  -6.6 -5.9 

Average 
protein 
score 

-6.09 -4.31 -3.96 -4.93 -5.0 -4.67 -4.76 -4.84 -4.93 -5.79 -5.13 -5.36 -5.21  

 

 > -4.0  -4.0 ≤ score < -5.0  -5.0 ≤ score < -6.0  -6.0 ≤ score ≤ -6.5 > -6.5 
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Table 4. Docking scores. Averages of each protein and derivative are shown.  
 
Interactions between the protein and ligand with the lowest docking scores were visualized. 
 

 
Figure 6. a. 3D and b. 2D view of PEITC docked to p38alpha (PDB 5OMG). 
 

 
Figure 7. a. 3D and b. 2D view of PEITC docked to Heme Oxygenase-1 (PDB 1WE1). 
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Figure 8. a. 3D and b. 2D view of PEITC docked to Human Cytochrome P450 1A1 (PDB 6DWN). 
 

 
Figure 9. a. 3D and b. 2D view of PEITC docked to Human S-Adenosylmethionine Decarboxylase (PDB 
1JL0). 
Figure 10. a. 3D and b. 2D view of SFN-GSH docked to Macrophage Migration Inhibitory Factor (PDB 
3WNS). 
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Discussion  
 
QSAR  
 
All derivatives had a DLS_con score of above 0.4, and six out of seven derivatives had a favorable DLS_con score of 
above 0.8. The highest score achieved was 0.95 by SFN itself, reinforcing the promise of SFN as a pharmaceutical. 
SFN-NAC had a DLS_con score of 0.93, with the only violations being the total number of rotatable bonds and polar 
surface area (TPSA) parameters. Next in line was SFN-Cys with a score of 0.91, then SFE with a surprisingly high 
score of 0.88. After SFE was PEITC with a score of 0.84. This score is lower than expected, as PEITC is the only 
derivative in the set that contains an aromatic ring. With aromatic rings being abundant in approved pharmaceuticals 
due to their rigidity and functionality, our team expected PEITC to have a higher drug-like score. However, in the 
DLS_cons parameters, the only specification regarding rings was that there must be less than or equal to four rings in 
a given compound. Therefore, aromatic rings do not play a significant role in the DLS_cons score, which explains 
why PEITC had a lower score than derivatives without aromatic rings. After PEITC, SFN-CG had a score of 0.82, 
and SFN-GSH had a score of 0.46. It was expected that SFN-GSH would have the lowest score because of its large 
structure and thus would violate MW, TPSA, RBN, and more parameters.  

For LLS_2, five out of seven derivatives had a perfect score of 1. These derivatives include PEITC, SFY-
Cys, SFN-NAC, SFE, and SFN. These results correlate with the results of DLS_cons, as these five derivatives had a 
DLS_con score greater than or equal to 0.84. SFN-CG had an LLS_2 score of 0.75, as it violated RBN and nN+nO 
greater than or equal to 1 parameter. Lastly, SFN-GSH had a poor LLS_2 score of 0.5. SFN-GSH violated the H-bond 
donors, molecular weight, MLOGP, and RBN parameters. Once again, this is not surprising due to the large structure 
of SFN-GSH.  
SwissADME  
 According to Table 1, out of the seven derivatives, SFN, SFE, and PEITC had high GI absorption. Of these 
three, only PEITC had BBB permeability. Additionally, information regarding each derivative acting as a substrate 
of the Pgp (P-glycoprotein) implies whether the derivative has sufficient drug absorption and distribution. As an ef-
flux transporter, Pgp limits the bioavailability of orally administered drugs by pumping them back into the lumen. 
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Therefore, a substrate of Pgp can result in increased bioavailability of the susceptible drug.41 SFN-GSH is the only 
Pgp substrate, so this indicates that SFN-GSH has the potential to bind to Pgp. However, it is also shown to have 
low GI absorption and being BBB impermeable. This shows that even potential Pgp substrates are not necessarily 
bioavailable. Lastly, in the table is the Bioavailability Score, also known as the Abbot Bioavailability Score, pro-
posed by Martin YC, which predicts a compound's probability of having at least 10% bioavailability in a rat or 
measurable Caco-2 permeability.42 SFN, SFE, PEITC, SFN-Cys, and SFN-CG have a bioavailability score of 0.55. 
SFN-NAC and SFN-GSH both have a bioavailability score of 0.11.  

The bioavailability radar of each compound was evaluated using the SwissADME tool. The bioavailability 
radar enables a first glance at the drug-likeness of a molecule. The pink area in each figure represents the ideal range 
of each property. Six properties were taken into account: lipophilicity, size, polarity, solubility, flexibility, and satu-
ration. The optimal range for lipophilicity would be between -0.7 and +0.5. Lipophilicity is a critical physicochemical 
parameter that contributes to the absorption, distribution, metabolism, excretion, and toxicity of a drug.43 The optimal 
size or molecular weight range would be between 150 and 500 g/mol. The optimal polarity is between 20 and 130 Å 
2. The best solubility should not be higher than six as having a soluble molecule greatly aids many drug development 
activities, mainly the ease of handling and formation. For saturation, the fraction of carbons in the sp3 hybridization 
should not be less than 0.25. Finally, the flexibility should be no more than nine rotatable bonds.15 According to Figure 
3, SFN, SFE, and PEITC all relatively stay in the optimal ranges for each property, indicating that they have the 
highest drug-likeness. The other four compounds were not predicted to be orally bioavailable because they exceeded 
the ranges for flexibility and polarity.  
Docking  

After docking studies, five protein-ligand complexes with the highest binding affinity were further analyzed. 
While the docking scores of all protein-ligand complexes can be found in Table 3, the ones selected include PEITC 
docked to Human S-Adenosylmethionine Decarboxylase (PDB 1JL0), p38alpha (PDB 5OMG), Heme Oxygenase-1 
(PDB 1WE1), Human Cytochrome P450 1A1 (PDB 6DWN), and SFN-GSH docked to Macrophage Migration Inhib-
itory Factor (PDB 3WNS). These complexes were chosen for their highest binding affinity and because the average 
derivative/protein docking score was the highest in their respective groups. The average derivative docking score for 
PEITC was -5.9 kcal/mol, and the average docking score for the Macrophage Migration Inhibitory Factor was -6.09 
kcal/mol.  

PEITC docked to p38alpha had a docking score of -6.6 kcal/mol. As shown in Figure 6, the active site resi-
dues include ASN201, SER293, ASP292, LEU291, ILE250, PRO242, as PEITC has van der Waals interactions with 
them. Other interactions include a hydrogen bond between the sulfur present in PEITC and the positively charged 
HIS199. A hydrogen bond is a chemical bond between a strongly electronegative atom such as oxygen, fluorine, or 
nitrogen and a partially positive hydrogen molecule. These bonds have an intermolecular attraction stronger than van 
der Waals forces but weaker than ionic and covalent bonds. The same sulfur forms pi-sulfur interactions with the 
aromatic ring in TYR200. Pi-Sulfur interactions are non-covalent interactions in which the lone pair of valence elec-
trons in the electron cloud of sulfur interacts with the electron cloud of the aromatic ring of the aromatic amino acid, 
tyrosine. The nitrogen in PEITC interacts with GLU192 and TRP197 in the form of pi-cation interactions. Pi-Cation 
interactions are strong non-covalent interactions between the negatively charged pi face of an aromatic ring and pos-
itively charged cations.44 These interactions contribute to protein stability, molecular recognition, and drug-receptor 
interactions. Lastly, PEITC’s aromatic rings form pi-alkyl interactions with LEU195, LEU246, and PRO191. Pi-Alkyl 
interactions are a form of non-covalent interactions that are vital in protein-ligand recognition. The interaction occurs 
between the electron group of an element from the alkyl group and the aromatic rings of a protein.45 Although p38alpha 
is a tumor suppressor, it can also function as a tumor promoter and can acquire cancerous roles in cell metabolism and 
angiogenesis and has been linked to low p38alpha activations.46 PEITC can inhibit the p38alpha activations in cancers, 
thereby reducing angiogenesis and other tumor-promoting mechanisms. Since PEITC has a high docking score to 
p38alpha, it could play a role in inhibiting p38alpha pathways.   

Volume 10 Issue 4 (2021) 

ISSN: 2167-1907 www.JSR.org 13



PEITC docked to Heme Oxygenase-1 (HO-1) had a docking score of -6.6 kcal/mol. As shown in Figure 7, 
Van der Waals interactions occur with residues PHE25, TYR39, LEU42, TYR156, ARG127, and GLY130. The aro-
matic ring present in PEITC formed pi-pi stacking interactions with PHE29 and PHE203 and pi-alkyl interactions 
with VAL26, LEU138, and the nearby heme molecule. Pi-pi stacking interactions are non-covalent attractive forces 
between aromatic rings that have pi bonds which are covalent chemical bonds. Pi-pi stacking contributes to drug 
delivery and molecular recognition.47 Lastly, the electronegative sulfur on PEITC formed a hydrogen bond with the 
heme molecule. HO-1 activation is known to be susceptible to proteolytic cleavage, and in addition, the nuclear local-
ization of HO-1 facilitates tumor growth and proliferation. Inhibiting the activation of HO-1 can reduce tumor for-
mation and its proliferation.48 PEITC could play a role in inhibiting HO-1 activation since PEITC has a high binding 
affinity to HO-1.  

PEITC docked to Human Cytochrome P450 1A1 had a docking score of -6.8 kcal/mol. As shown in Figure 
8, PETIC formed van der Waals interactions with ASN222, ASN225, PHE319, LEU312, GLY316, ALA317, and 
ILE115. Additionally, the aromatic ring formed pi-pi stacking interactions with PHE258 and PHE224. The nitrogen 
atom on PEITC had attractive charges with the negatively charged ASP313. Lastly, the sulfur atom had pi-sulfur 
interactions with PHE123. Cytochromes P450 1A1 is an extrahepatic monooxygenase involved in the metabolism of 
endogenous substrates and drugs.49 It has been implicated in the bioactivation of carcinogens. Therefore, compounds 
that could regulate the activity of CYPs are essential for the prevention of chemical-induced carcinogenesis.50 Since 
PEITC had a high binding affinity to CYP 1A1, it could inhibit the enzyme and prevent tumor initiation.  

 PEITC docked to Human S-Adenosylmethionine Decarboxylase (AdoMetDC) had a docking score of -6.9 
kcal/mol. As shown in Figure 9, the active site residues include LYS327. PRO277, PHE305, VAL272, GLU303, and 
ARG269, with which PEITC has van der Waals interactions. Van der Waals interactions occur between atoms in close 
proximity that generate electrical interactions. Individually, these forces are the weakest compared to the strength 
(kJ/mol) of hydrogen bonds and ionic interactions. However, a collective of Van der Waals forces between atoms or 
molecules has considerably strong interactions. Additionally, an Amide-Pi stacked interaction is formed between the 
surface of the amide bond on LYS276 and the surface of the aromatic ring present in PEITC. The last interaction 
shown in Figure 4.b is an attractive charge between the nitrogen in PEITC and the negatively charged GLU273. 
Attractive charges result from the force generated between two particles of opposite charges, as seen by the bond 
between PEITC and GLU273. AdoMetDC is an enzyme in the production of polyamines, which are ubiquitous organic 
cations needed for normal cell differentiation and proliferation. Tumor tissues often have elevated levels of polyam-
ines, therefore increasing cellular proliferation. Inhibiting AdoMetDC in cancers with high expression of polyamines 
can reduce irregular cell proliferation.51 Since PETIC has a high docking score to AdoMetDC, it may play a role in 
the inhibition of AdoMetDC.   

Lastly, SFN-GSH docked to Macrophage Migration Inhibitory Factor (MIF) had the highest binding affinity 
with a docking score of -8.0 kcal/mol. Seen in Figure 10, the most prevalent interaction in this protein-ligand complex 
was van der Waals interactions. While van der Waals forces are considered weak, in large numbers they can become 
much stronger. The number of van der Waals interactions can contribute to the binding affinity of this complex, which 
was the highest out of the 91 docking runs completed. The only other interactions present were hydrogen bonds with 
residues SER61, ASN7 in chain B, ASN7 in chain C, and LEU59. MIF is a pleiotropic, proinflammatory cytokine 
that plays a great role in the initiation of immune and inflammatory response. However, it also has a unique tautomer-
ase enzymatic activity, causing an elevation of MIF. Elevated levels of MIF promote proliferation, angiogenesis, and 
metastasis of almost all cancer cells. The inhibition of the tautomerase activity interferes with the interaction of MIF 
to other proteins, which thereby inhibits cancer properties.28  

 

Conclusion   
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In this research, QSAR, ADME, and docking studies were conducted to determine the most promising anticancer 
therapeutic in a small set of SFN derivatives and metabolites. Consistent with our hypothesis, PEITC dominated as 
the most promising small molecule therapy overall.   
 QSAR studies conducted with the alvaDesc software determined the drug-likeness and lead likeness of each 
compound. PEITC had a DLS_cons score of 0.84, which was the fifth-highest score. Even though this score is lower 
than other derivatives scores, 0.84 is an adequate score while evaluating 12 overall parameters within all the drug-like 
descriptors utilized in the dragoon consensus score. Additionally, PEITC had a perfect LLS_2 score of 1, confirming 
that it is a lead-like compound.  
 ADME studies with SwissADME predicted properties regarding bioavailability. PEITC was in the optimal 
range of 5 out of 6 bioavailability properties, as shown by Figure 3. While both SFN and SFE were in the optimal 
ranges for all bioavailability properties, it is crucial to consider each compound's permeation characteristics. PEITC 
has high GI absorption and is the only compound that is blood-brain barrier permeable. This characteristic is vital 
since therapeutics must be easily absorbed by the body to have any predicted effect.  
 Lastly, docking studies were utilized to predict the binding affinity of each compound to a small set of pro-
teins. Overall, PEITC had the highest average binding affinity, meaning that it had a high binding affinity to multiple 
proteins in the set. These notable proteins include AdoMetDC, p38alpha, HO-1, and Human Cytochrome P450 1A1. 
The binding affinity of PEITC to these proteins indicates that PETIC has a role in cancer prevention through reducing 
proliferation, carcinogenesis, and angiogenesis.  
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