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ABSTRACT 
 
In December of 2019, a novel coronavirus was first identified in Wuhan, China, and has since spread around the world, 
leaving a largely unsolved biomedical problem in its wake. Upon entry into host cells, the main protease is essential 
for the replication of viral RNA, which is what allows the virus to replicate inside humans. Inhibition of the main 
protease has been investigated as a potential strategy for inhibition of the viral replication cycle. Here, we designed a 
combinatorial library of small molecules and performed high-throughput virtual screening to identify a series of hit 
compounds that may serve as potential inhibitors of the main protease. In our design of covalent inhibitors of the 
coronavirus protease, we modeled a library of 361 peptidomimetic Michael acceptor small molecules, which are de-
signed to engage the nucleophilic cysteine residue in the active site of the protease in an irreversible 1,4-conjugate 
addition. We then employed a variety of computational tools to determine the binding affinity of our designed com-
pounds when bound to the protease active site, where we determined that cationic side chains are potentially beneficial 
for inhibition of SARS-CoV-2. 
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Introduction 
 
The novel coronavirus, Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), was first identified in late 2019 in 
Wuhan, China, and the associated disease, later termed COVID-19, was discovered to cause respiratory infections and 
in more severe cases, pneumonia and death in humans [1]. SARS-CoV-2 has caused a global pandemic that has thrown 
countries worldwide into a state of disorder and has presented a formidable biomedical, economic, and societal prob-
lem for billions worldwide. As of June 21, 2020, over 8.8 million COVID-19 cases have been reported, with the death 
toll surpassing 450,000. The COVID-19 pandemic presents the need for urgent identification of inhibitors and vac-
cines [2]. 

SARS-CoV-2 belongs to a family of 𝛽𝛽-coronaviruses, which are characterized by an enveloped, single-
stranded positive-sense RNA genome [3]. The novel coronavirus was determined to be similar to two zoonotic coro-
naviruses that emerged in the 20th century, SARS- CoV and MERS-CoV, both of which also caused respiratory in-
fections in humans [4]. Upon entry into the human host cell, the genome of the coronavirus is translated into two 
polyproteins, which are processed by the main protease (Mpro) and papain-like proteases into non-structural proteins 
(nsps). These nsps allow for the production of RNA that encode four main structural proteins (envelope (E), membrane 
(M), spike (S), nucleocapsid (N)) and other accessory proteins (Figure 1) [5, 6]. Because the main protease is essential 
to the development and replication of SARS-CoV-2, and there are no similar proteases in the human body, the Mpro is 
an ideal target for antiviral therapies [7].   

 
Figure 1. Mechanism of action of SARS-CoV-2. The spike glycoprotein of the virus mediates entry into human cells 
through ACE2 receptors on human lung cells, allowing the virus to use the cell’s resources to replicate.  
 
The main protease of SARS-CoV-2, which is well conserved across all coronaviruses, is a dimer consisting of two 
monomers, each of which has three domains, and a catalytic dyad, made up of His41 and Cys145, between domains I 
and II (residues 10-99 and 100-182, respectively), which also includes the substrate binding site (Figure 2) [8]. The 
dimer that is formed by the SARS-CoV-2 main protease has a contact interface between domain II of monomer A and 
the NH2- terminal residues (“N finger”) of monomer B, which is necessary for catalytic activity because the interaction 
between the two monomers allows for the proper orientation of the substrate binding pocket [9].  
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Figure 2. Crystal structure of the SARS-CoV-2 Mpro monomer (PDB: 6Y84), with each of the three domains labeled. 
Cys145—the target in our design of inhibitors—is circled. 
   
As of now, there are no approved antiviral drugs against SARS-CoV-2, though there have been a series of recent 
attempts to target proteins essential to coronavirus entry or replication by performing high-throughput screenings on 
large libraries of molecules with the aim of identifying a few possible lead compounds [10]. We hypothesized that 
this approach could be applied in the design of novel chemical entities towards inhibition of the main protease of the 
coronavirus.  

Previous efforts towards the design of a covalent inhibitor of SARS-CoV-2 have targeted the cysteine residue 
in the substrate binding pocket of Mpro, where an ɑ-ketoamide inhibitor was designed based on the nucleophilic addi-
tion of Cys145 onto the ɑ-keto group of the inhibitor and screened computationally [11]. Michael additions for irre-
versible binding of inhibitors to the main protease of viruses have been previously studied, where a peptidic ɑ, β - 
unsaturated ester served as the Michael acceptor and demonstrated antiviral activity in cell cultures [12].  

Here, we report the rational design and high-throughput virtual screening of a library of targeted compounds 
towards the inhibition of SARS-CoV-2. We modeled nearly four hundred designed inhibitors, screened them compu-
tationally to identify the structure-activity relationship (SAR) between side chain structures on our designed inhibitors, 
and predicted binding affinities to the Mpro active sites from molecular docking.           

In the substrate-binding pocket of Mpro, the thiol side chain of Cys145 (Figure 2) is able to covalently bind to 
inhibitors, which prevents catalytic activity. The design of our inhibitors is inspired by a Michael Addition reaction: 
a 1,4 conjugate addition of a nucleophile (such as the primary thiol in cysteine) to an α,β-unsaturated carbonyl or 
analogous functional group (Figure 3).  

 
Figure 3. Reaction mechanism of the Michael Addition between the thiol of Cys145 and the dehydroalanine on our 
designed inhibitors, resulting in irreversible covalent binding of our inhibitors to the active site residue.  
 
Michael additions with dehydroalanine have been reported with thiols and have also been reported to inhibit enzyme 
activity through irreversible formation of a covalent bond to the active site nucleophilic residue [13, 14].   
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Our library of inhibitors were biologically inspired by a tripeptide (1), with structural modifications shown in Figure 
4. In our design of inhibitors, the central residue was made into a dehydroalanine, which we envisioned might act as 
the Michael acceptor warhead. The amides of each peptide bond were methylated to minimize the possibility of pro-
teolytic hydrolysis in biological contexts [15]. The addition of an acyl group to the N-terminus and a benzyl ester to 
the C-terminus served to improve the pharmacokinetic properties of the inhibitors. The other two residues (R1 and R3) 
embodied various L-amino acid side chains; cysteine was excluded from this screen at both R1 and R3 positions to 
avoid the possibility of an intramolecular macrocyclization, thus allowing for the design of 361 analog compounds. 
We envisioned irreversible covalent binding of an inhibitor to Mpro might be achieved with a binding conformation 
wherein the central dehydroalanine warhead is poised within reacting distance of the thiol of Cys145, as shown in 
Figure 3.     

 
Figure 4. Modifications made to a tripeptide for the design of SARS-CoV-2 Mpro inhibitors.  
 

Results  
 
Each structure was evaluated for predicted binding affinity to the Mpro via molecular docking. A docking screen was 
conducted using Swissdock on 361 compounds with various L-amino acid side chains as R1 and R3. Results were 
quantified by the free energy of binding (ΔG in kcal/mol) of the highest scoring docking pose. A heat map of the 
lowest ΔG values returned for each compound (Figure 5) is color coded by increasing binding affinity. Squares that 
are in grey failed to dock because they either resulted in a topology error or took too much memory on the SwissDock 
server. 
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Figure 5. Heat map of designed inhibitors docked to the main protease of SARS-CoV-2 (PDB:6Y84). The binding 
affinity of the hit compound is shown in yellow. Each square is color coded by increasing binding affinity. 
 
Results from the docking study suggest that cationic amino acid side chains as either R1 or R3 give the highest binding 
affinities, with ΔG values around -10.00 kcal/mol, with a few exceptions. It seems that strong electrostatic interactions 
between the cationic side chains and a proximal Glu166 residue in the binding pocket (Figure 6) is operative in creating 
the high binding affinity observed. This is clearly evidenced by the fact that side chains containing a free amine (with 
a lysine residue) and/or guanidinium (with an arginine residue) result in a strikingly higher binding affinity to the Mpro 
active site in comparison to compounds with anionic or uncharged side chains. Moreover, it is found that this SAR is 
not highly dependent on the positioning of the substituent positions bearing the cationic side chain - substitution at R1 
or R3 with a lysine or arginine seem to be equally effective in giving a high binding affinity. 

 
 
Figure 6. Designed inhibitors with arginine and lysine in both R1 and R3. The structure shown in blue has lysine as 
R1 (ΔG = -10.26 kcal/mol). The structure in purple has lysine as R3 (ΔG = -9.82 kcal/mol).   
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When presented with both lysine and arginine side chains in the same compound, interactions between the Glu166 
residue of the target and primary amine of the ligand’s lysine side chain are preferred (Figure 6) regardless of the order 
of lysine and arginine side chains in the compound. We attribute this to a greater localization of cationic character at 
the primary amine center over the guanidinium.  

Of the 361 compounds docked, one hit compound, with two arginine side chains, shown in Figure 7, was 
identified. The most thermodynamically stable binding pose of this compound had a binding affinity of the -11.51 
kcal/mol to the active site of the main protease. Electrostatic attractions between the cationic guanidinium side chain 
at R3 and a proximal anionic Glu166 residue, along with hydrogen-bond interactions between the guanidinium side 
chain at R1 with Thr26 are largely responsible for the ligand’s high binding affinity. In the most thermodynamically 
stable binding pose of the hit compound, the distance between the Glu166 residue and the cationic side chain is 3.00 
Å, an indication of the strength of the electrostatic attraction.  

 
Figure 7. Hit compound, with two arginine side chains, docked to the main protease. The binding pose of the hit 
compound with the best binding affinity to the main protease (ΔG = -11.51 kcal/mol).  
 

Discussion 
 
In a campaign to identify potential lead compounds that might serve as covalent inhibitors of the SARS-CoV-2 main 
protease, we screened over three hundred peptidomimetic structures with varying side chains at two positions. From 
this screen, it was determined that structures with at least one cationic side chain gave the highest binding affinity to 
the active site of the main protease. Moreover, this screen identified a top hit structure, with two arginine-like side 
chains, as having the highest predicted binding affinity. The hit structure described can be synthesized in under ten 
steps from commercially available starting materials. 

Based on this initial hit structure, studies on optimized second-generation ligands and on potential pro-drug 
strategies to deliver dicationic ligands are currently underway. One issue with some cationic compounds is low cell 
membrane permeability, as evidenced by the negative clogP value (-1.38 from ChemAxon MarvinSketch) of our hit 
compound. This might be ameliorated by pro-drug approaches that could improve the pharmacokinetic properties of 
the compound. Moreover, the present study has been limited to conventional L-amino acid side chains in the structures 
of the compounds screened. The current work has not fully explored the possibility of D-amino acid side chains, which 
are less susceptible to proteolytic hydrolysis, and reversal of one or both of the stereogenic centers of our hit compound 
are one possible avenue of study for second-generation ligands [16].  While the hit structure reported here and other 
compounds from our library have yet to be evaluated in vitro or in vivo, the SAR presented provides structural insight 
into the chemical and biophysical factors at play in the future design and development of small molecule protease 
inhibitors of SARS-CoV-2.   
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Experimental Procedures 
 
Molecular Mechanics Pre-Optimization  
 
All compounds were modeled through Avogadro, an open source molecular builder and visualization tool [17]. The 
local pH in the protease enzyme was assumed to be equal to the bulk pH of 7.4, and the appropriate protonation states 
were determined. An initial molecular mechanics geometry pre-optimization with an Merck Molecular Forcefield 
(MMFF94) at 10,000 steps was applied to all molecules, and input files for quantum mechanical structural optimiza-
tion were generated through Avogadro.    
 
Density Functional Theory (DFT) 
 
Quantum mechanical structural optimizations, which are necessary for accurate prediction of thermodynamically min-
imized geometries of each compound, was completed using ORCA, an ab initio quantum molecular modeling software 
[18]. Density functional theory (DFT) geometry optimizations were completed with a B3LYP functional, def2-SVP 
basis set, and an implicit conductor- like polarizability model (CPCM) solvation model of water (dielectric= 80.4). 
Density functional theory calculations were performed on a Dell PowerEdge 710 server with a 24 core Intel Xeon 
X5660 processor @ 2.80GHz and 32GB RAM. 
 
Molecular Docking  
 
Docking studies on the protease inhibitors were conducted with SwissDock, a web server developed by the Swiss 
Institute of Bioinformatics [19]. Swissdock is based on the docking software EADock DSS, and the algorithm starts 
by generating binding modes within a grid box and estimating CHARMM energies.  The unliganded crystal structure 
of the main protease of SARS-CoV-2 (PDB: 6Y84 [20]) was used as the receptor protein. The sulfur atom of residue 
cysteine 145 was set as the center of the grid box. Additionally, side chains on the protein with up to 5Å of flexibility 
from the ligand in the predicted binding mode were co-optimized during docking. Predicted binding modes were 
scored by the free energy of binding (ΔG) in kcal/mol. The resulting binding poses were visualized using UCSF 
Chimera [21].   
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